
1 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

[MS-ES3]:
Internet Explorer ECMA-262 ECMAScript Language
Specification Standards Support Document

Intellectual Property Rights Notice for Open Specifications
Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL‘s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a

written license, or if the technologies described in the Open Specifications are not covered by
the Open Specifications Promise or Community Promise, as applicable, patent licenses are

available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

Revision Summary

Revision summary

Date Revision history Comments

3/26/2010 1.0 Initial Availability

3 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Table of Contents

Table of Contents .. 3

1 Introduction .. 7
1.1 Glossary .. 7
1.2 References ... 7

1.2.1 Normative References .. 7
1.2.2 Informative References .. 8

1.3 Microsoft Implementations ... 8
1.4 Conformance Requirements .. 8
1.5 Notation ... 8

2 Conformance Statements ... 10
2.1 Normative Variations ... 10

2.1.1 [ECMA-262] Section 6, Source Text ... 10
2.1.2 [ECMA-262] Section 7, Lexical Conventions .. 10
2.1.3 [ECMA-262] Section 7.1, Unicode Format-Control Characters 10
2.1.4 [ECMA-262] Section 7.3, Line Terminators.. 11
2.1.5 [ECMA-262] Section 7.4, Comments .. 11
2.1.6 [ECMA-262] Section 7.5.3, Future Reserved Words .. 12
2.1.7 [ECMA-262] Section 7.8.4, String Literals ... 12
2.1.8 [ECMA-262] Section 7.8.5, Regular Expression Literals 15
2.1.9 [ECMA-262] Section 7.9+1, Conditional Source Text Processing 16
2.1.10 [ECMA-262] Section 7.9+1.1, Global State ... 17
2.1.11 [ECMA-262] Section 7.9+1.2, Conditional Processing Algorithm 18
2.1.12 [ECMA-262] Section 8, Types .. 29
2.1.13 [ECMA-262] Section 8.5, The Number Type .. 30
2.1.14 [ECMA-262] Section 8.6.2, Internal Properties and Methods 30
2.1.15 [ECMA-262] Section 8.6.2.2, [[Put]] (P, V) ... 30
2.1.16 [ECMA-262] Section 8.7, The Reference Type ... 31
2.1.17 [ECMA-262] Section 8.7.1, GetValue (V) .. 31
2.1.18 [ECMA-262] Section 9.1, ToPrimitive ... 31
2.1.19 [ECMA-262] Section 9.2, To Boolean .. 32
2.1.20 [ECMA-262] Section 9.3, ToNumber ... 33
2.1.21 [ECMA-262] Section 9.8, ToString ... 33
2.1.22 [ECMA-262] Section 9.9, ToObject ... 34
2.1.23 [ECMA-262] Section 10.1.3, Variable Instantiation .. 35
2.1.24 [ECMA-262] Section 10.1.8, Arguments Object ... 36
2.1.25 [ECMA-262] Section 10.2, Entering an Execution Context 36
2.1.26 [ECMA-262] Section 10.2.1, Global Code .. 36
2.1.27 [ECMA-262] Section 10.2.2, Eval Code ... 37
2.1.28 [ECMA-262] Section 10.2.3, Function Code ... 37
2.1.29 [ECMA-262] Section 11.1.4, Array Initialiser ... 37
2.1.30 [ECMA-262] Section 11.1.5, Object Initialiser ... 39
2.1.31 [ECMA-262] Section 11.2.1, Property Accessors .. 39
2.1.32 [ECMA-262] Section 11.4.1, The Delete Operator .. 40
2.1.33 [ECMA-262] Section 11.4.3, The typeof Operator .. 40
2.1.34 [ECMA-262] Section 11.6.1, The Addition Operator (+) 41
2.1.35 [ECMA-262] Section 11.8.2, The Greater-than Operator (>) 42
2.1.36 [ECMA-262] Section 11.8.3, The Less-than-or-equal Operator (<=) 42
2.1.37 [ECMA-262] Section 11.8.5, The Abstract Relational Comparison Algorithm 43
2.1.38 [ECMA-262] Section 11.9.3, The Abstract Equality Comparison Algorithm 44
2.1.39 [ECMA-262] Section 11.9.6, The Strict Equality Comparison Algorithm 45
2.1.40 [ECMA-262] Section 12, Statements .. 45
2.1.41 [ECMA-262] Section 12.1, Block .. 46
2.1.42 [ECMA-262] Section 12.6.3, The for Statement ... 46

4 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.43 [ECMA-262] Section 12.6.4, The for-in Statement ... 48
2.1.44 [ECMA-262] Section 12.11, The switch Statement ... 49
2.1.45 [ECMA-262] Section 12.14, The try Statement .. 52
2.1.46 [ECMA-262] Section 12.14+1, The debugger Statement 52
2.1.47 [ECMA-262] Section 13, Function Definition .. 53
2.1.48 [ECMA-262] Section 13.2, Creating Function Objects ... 57
2.1.49 [ECMA-262] Section 13.2.2, [[Construct]] .. 58
2.1.50 [ECMA-262] Section 15, Native ECMAScript Objects ... 58
2.1.51 [ECMA-262] Section 15.1, The Global Object .. 59
2.1.52 [ECMA-262] Section 15.1.2.1, eval(x) .. 59
2.1.53 [ECMA-262] Section 15.1.2.2, parseInt (string, radix) .. 59
2.1.54 [ECMA-262] Section 15.2.1.1, Object ([value]) ... 60
2.1.55 [ECMA-262] Section 15.2.2.1, newObject ([value]) ... 61
2.1.56 [ECMA-262] Section 15.2.3, Properties of the Object Constructor 61
2.1.57 [ECMA-262] Section 15.2.4.2, Object.prototype.toString () 61
2.1.58 [ECMA-262] Section 15.2.4.3, Object.prototyope.toLocaleString () 62
2.1.59 [ECMA-262] Section 15.2.4.4, Object.prototype.valueOf () 62
2.1.60 [ECMA-262] Section 15.2.4.5, Object.prototyop.hasOwnProperty (V) 62
2.1.61 [ECMA-262] Section 15.2.4.6, Object.prototype.isPrototype Of (V) 62
2.1.62 [ECMA-262] Section 15.2.4.7, Object.prototype.propertyIsEnumerable (V) 63
2.1.63 [ECMA-262] Section 15.3.4 Properties of the Function Prototype Object 63
2.1.64 [ECMA-262] Section 15.3.4.2, Function.prototype.toString () 64
2.1.65 [ECMA-262] Section 15.3.4.3, Function.prototype.apply (thisArg, argArray) 64
2.1.66 [ECMA-262] Section 15.3.4.4, Function.prototype.call (thisArg [, arg1[, arg2, …

]]) 65
2.1.67 [ECMA-262] Section 15.3.5.2, prototype .. 65
2.1.68 [ECMA-262] Section 15.4.2.1, new Array ([item0 [, item1 [, …]]]) 65
2.1.69 [ECMA-262] Section 15.4.4.3, Array.prototype.toLocaleString () 65
2.1.70 [ECMA-262] Section 15.4.4.4, Array.prototype.concat ([item1 [, item2 [, …]]]) . 66
2.1.71 [ECMA-262] Section 15.4.4.5, Array.prototype.join (separator) 67
2.1.72 [ECMA-262] Section 15.4.4.6, Array.prototype.pop () .. 68
2.1.73 [ECMA-262] Section 15.4.4.7, Array.prototype.push ([item1 [, item2 [, …]]]) 69
2.1.74 [ECMA-262] Section 15.4.4.8, Array.prototype.reverse () 70
2.1.75 [ECMA-262] Section 15.4.4.9, Array.prototype.shift () 71
2.1.76 [ECMA-262] Section 15.4.4.10, Array.prototype.slice (start, end) 72
2.1.77 [ECMA-262] Section 15.4.4.11, Array.prototype.sort (comparefn) 74
2.1.78 [ECMA-262] Section 15.4.4.12, Array.prototype.splice (start, deleteCount [, item1

[, item2 [, ...]]]) .. 76
2.1.79 [ECMA-262] Section 15.4.4.13, Array.prototype.unshift ([item1 [, item2 [, ...]]])78
2.1.80 [ECMA-262] Section 15.4.5.1, [[Put]] (P, V) ... 79
2.1.81 [ECMA-262] Section 15.4.5.2, length ... 80
2.1.82 [ECMA-262] Section 15.5.3.2, String.fromCharCode ([char0 [, char1 [, …]]]) 80
2.1.83 [ECMA-262] Section 15.5.4, Properties of the String Prototype Object 80
2.1.84 [ECMA-262] Section 15.5.4.3, String.prototype.valueOf () 81
2.1.85 [ECMA-262] Section 15.5.4.7, String.prototype.indexOf (searchString, position) ... 81
2.1.86 [ECMA-262] Section 15.5.4.8, String.prototype.lastIndexOf (searchString, position)81
2.1.87 [ECMA-262] Section 15.5.4.9, String.prototype.localeCompare (that) 81
2.1.88 [ECMA-262] Section 15.5.4.10, String.prototype.match (regexp) 81
2.1.89 [ECMA-262] Section 15.5.4.11, String.prototype.replace (searchValue,

replaceValue) .. 82
2.1.90 [ECMA-262] Section 15.5.4.12, String.prototype.search (regexp) 82
2.1.91 [ECMA-262] Section 15.5.4.13, String.prototype.slice (start, end) 83
2.1.92 [ECMA-262] Section 15.5.4.14, String.prototype.split (separator, limit) 83
2.1.93 [ECMA-262] Section 15.5.4.17, String.prototype.toLocaleLowerCase () 84
2.1.94 [ECMA-262] Section 15.5.4.19, String.prototype.toLocaleUpperCase () 84
2.1.95 [ECMA-262] Section 15.7.4, Properties of the Number Prototype Object 85
2.1.96 [ECMA-262] Section 15.7.4.2, Number.prototype.toString (radix) 85

5 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.97 [ECMA-262] Section 15.7.4.3, Number.prototype.toLocaleString () 85
2.1.98 [ECMA-262] Section 15.7.4.4, Number.prototype.valueOf () 86
2.1.99 [ECMA-262] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits) 86
2.1.100 [ECMA-262] Section 15.7.4.6, Number.prototype.toExponential (fractionDigits) 87
2.1.101 [ECMA-262] Section 15.7.4.7, Number.prototype.toPrecision (precision) 88
2.1.102 [ECMA-262] Section 15.8.2, Function Properties of the Match Object 89
2.1.103 [ECMA-262] Section 15.9.1.8, Local Time Adjustment .. 90
2.1.104 [ECMA-262] Section 15.9.1.9, Daylight Saving Time Adjustment 90
2.1.105 [ECMA-262] Section 15.9.1.14, TimeClip (time) .. 90
2.1.106 [ECMA-262] Section 15.9.4.2, Date.parse (string) ... 91
2.1.107 [ECMA-262] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [, minutes [,

seconds [, ms]]]]]) ... 102
2.1.108 [ECMA-262] Section 15.9.5, Properties of the Date Prototype Object 102
2.1.109 [ECMA-262] Section 15.9.5.2, Date.prototype.toString () 103
2.1.110 [ECMA-262] Section 15.9.5.3. Date.prototype.toDateString () 104
2.1.111 [ECMA-262] Section 15.9.5.4, Date.prototype.toTimeString () 104
2.1.112 [ECMA-262] Section 15.9.5.5, Date.prototype.toLocaleString () 104
2.1.113 [ECMA-262] Section 15.9.5.6, Date.prototype.toLocaleDateString () 105
2.1.114 [ECMA-262] Section 15.9.5.7, Date.prototype.toLocaleTimeString () 105
2.1.115 [ECMA-262] Section 15.9.5.28. Date.prototype.setMilliseconds (ms) 106
2.1.116 [ECMA-262] Section 15.9.5.29, Date.prototype.setUTCMilliseconds (ms) 106
2.1.117 [ECMA-262] Section 15.9.5.30, Date.prototype.setSeconds (sec [, ms]) 106
2.1.118 [ECMA-262] Section 15.9.5.31, Date.prototype.setUTCSeconds (sec [, ms]) 107
2.1.119 [ECMA-262] Section 15.9.5.33, Date.prototype.setMinutes (min [, sec [, ms]]).. 107
2.1.120 [ECMA-262] Section 15.9.5.34, Date.prototype.setUTCMinutes (min [, sec [, ms]])107
2.1.121 [ECMA-262] Section 15.9.5.35, Date.prototype.setHours (hour [, min [, sec [, ms

]]]) 108
2.1.122 [ECMA-262] Section 15.9.5.36, Date.prototype.setUTCHours (hour [, min [, sec [,

ms]]]) ... 108
2.1.123 [ECMA-262] Section 15.9.5.36, Date.prototype.setDate (date) 109
2.1.124 [ECMA-262] Section 15.9.5.37, Date.prototype.setUTCDate (date) 109
2.1.125 [ECMA-262] Section 15.9.5.38, Date.prototype.setMonth (month [, date]) 109
2.1.126 [ECMA-262] Section 15.9.5.39, Date.prototype.setUTCMonth (month [, date]) .. 110
2.1.127 [ECMA-262] Section 15.9.5.40, Date.prototype.setFullYear (year [, month [, date

]]) 110
2.1.128 [ECMA-262] Section 15.9.5.41, Date.prototype.setUTCFullYear (year [, month [,

date]]) .. 111
2.1.129 [ECMA-262] Section 15.10.1, Patterns ... 111
2.1.130 [ECMA-262] Section 15.10.2.1, Notation .. 112
2.1.131 [ECMA-262] Section 15.10.2.2, Pattern .. 112
2.1.132 [ECMA-262] Section 15.10.2.3, Disjunction .. 112
2.1.133 [ECMA-262] Section 15.10.2.5, Term ... 113
2.1.134 [ECMA-262] Section 15.10.2.7, Quantifier .. 114
2.1.135 [ECMA-262] Section 15.10.2.8, Atom ... 115
2.1.136 [ECMA-262] Section 15.10.2.9, AtomEscape ... 115
2.1.137 [ECMA-262] Section 15.10.2.12, CharacterClassEscape 116
2.1.138 [ECMA-262] Section 15.10.2.13, CharacterClass ... 116
2.1.139 [ECMA-262] Section 15.10.2.15, NonemptyClassRanges 116
2.1.140 [ECMA-262] Section 15.10.2.19, ClassEscape ... 116
2.1.141 [ECMA-262] Section 15.10.4.1, new RegExp (pattern, flags) 117
2.1.142 [ECMA-262] Section 15.10.6, Properties of the RegExp Prototype Object 117
2.1.143 [ECMA-262] Section 15.10.6.2, RegExp.prototype.exec (string) 118
2.1.144 [ECMA-262] Section 15.10.6.4, RegExp.prototype.toString () 119
2.1.145 [ECMA-262] Section 15.11.1.1, Error ([argument1 [, argument2]]message) 120
2.1.146 [ECMA-262] Section 15.11.2.1, new Error (messageOrNumber) 120
2.1.147 [ECMA-262] Section 15.44.4.3, Properties of the Error Prototype Object 120
2.1.148 [ECMA-262] Section 15.11.4.3, Error.prototype.message 120

6 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.149 [ECMA-262] Section 15.11.4.4, Error.prototype.toString () 121
2.1.150 [ECMA-262] Section 15.11.5, Properties of Error Instances 121
2.1.151 [ECMA-262] Section 15.11.6.2, RangeError .. 121
2.1.152 [ECMA-262] Section 15.11.6.4, SyntaxError ... 121
2.1.153 [ECMA-262] Section 15.11.6.5, TypeError .. 122
2.1.154 [ECMA-262] Section 15.11.7, NativeError Object Structure 122
2.1.155 [ECMA-262] Section 15.11.7.2, NativeError (message) 123
2.1.156 [ECMA-262] Section 15.11.7.4, New NativeError (message) 123
2.1.157 [ECMA-262] Section 15.11.7.10, NativeError.prototype.name 123
2.1.158 [ECMA-262] Section A.1, Lexical Grammar ... 123
2.1.159 [ECMA-262] Section A.3, Expressions .. 125
2.1.160 [ECMA-262] Section A.4, Statements ... 126
2.1.161 [ECMA-262] Section A.5, Functions and Programs ... 126
2.1.162 [ECMA-262] Section A.7, Regular Expressions ... 127
2.1.163 [ECMA-262] Section B.1.2, String Literals ... 128
2.1.164 [ECMA-262] Section B.2, Additional Properties .. 128
2.1.165 [ECMA-262] Section B.2.3, String.prototype.substr (start, length) 128
2.1.166 [ECMA-262] Section B.2.4, Date.prototype.getYear () 129
2.1.167 [ECMA-262] Section B.2.5, Date.prototype.setYear (year) 129

2.2 Clarifications .. 130
2.2.1 [ECMA-262] Section 7.8.5, Regular Expression Literals 130
2.2.2 [ECMA-262] Section 8.6.2, Internal Properties and Methods 130
2.2.3 [ECMA-262] Section 10.1.1, Function Objects ... 130
2.2.4 [ECMA-262] Section 15.1.2.2, parseInt (string, radix) 130

2.3 Error Handling .. 131
2.4 Security ... 131

3 Change Tracking .. 132

4 Index ... 133

7 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1 Introduction

JScript 5.x is a dialect of ECMAScript. The JScript 5.x dialect is based upon the ECMAScript Language

Specification (Standard ECMA-262) Third Edition [ECMA-262], published December 1999. This

document describes the level of support provided by JScript 5.x for that specification.

There are several variants of the JScript 5.x language:

 JScript 5.7 first shipped with Windows® Internet Explorer® 7

 JScript 5.8 first shipped with Windows Internet Explorer 8

Within this document, JScript 5.x refers to any version of JScript 5, beginning with JScript 5.7. JScript 5.7
and JScript 5.8 are used to refer to characteristics that are unique to those specific versions.

The [ECMA-262] specifications contain guidance for authors of webpages, browser users, and user
agents (browser applications). This conformance document considers only normative language from the
related specifications that applies directly to user agents.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in
[RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information. Please check the archive site,

http://msdn.microsoft.com/en-us/library/cc136647.aspx, as an additional source.

[ECMA-262] ECMA International, "Standard ECMA-262 ECMAScript Language Specification", 3rd edition

(December 1999), http://www.ecma-international.org/publications/files/ECMA-ST-

ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf

[ECMA-262/5] ECMA International, "Standard ECMA-262 ECMAScript Language Specification", 5th edition

(December 2009), http://www.ecma-international.org/publications/files/ECMA-

ST/ECMA-262.pdf

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats -
Information Interchange - Representation of Dates and Times", ISO 8601:2004, December 2004,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb

er=40874

[MS-ES3EX] Microsoft Corporation, ―Microsoft JScript Extensions to the ECMAScript Language

Specification Third Edition‖, March 2010. http://msdn.microsoft.com/en-

us/library/ff521046(VS.85).aspx

[RFC2119] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997, http://www.ietf.org/rfc/rfc2119.txt

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=113914
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
http://msdn.microsoft.com/en-us/library/ff521046(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff521046(VS.85).aspx
http://go.microsoft.com/fwlink/?LinkId=90317

8 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1.2.2 Informative References

None.

1.3 Microsoft Implementations

The following Microsoft products implement some portion of the ECMAScript specification:

 JScript 5.7 - first shipped with Internet Explorer 7

 JScript 5.8 - first shipped with Internet Explorer 8

Within this document, JScript 5.x refers to any version of JScript 5, beginning with JScript 5.7. ―JScript
5.7‖ and ―JScript 5.8‖ are used to refer to characteristics that are unique to those specific versions.

1.4 Conformance Requirements

To conform to [ECMA-262], a user agent must provide and support all the types, values, objects,

properties, functions, and program syntax and semantics described in the specification (See [ECMA-

262] section 2, Conformance). Any optional portions that have been implemented must also be

implemented as described by the specification. Normative language is usually used to define both

required and optional portions. (For more information, see [RFC2119].)

The following table lists the sections of [ECMA-262] and whether they are considered normative or

informative.

Sections Normative/Informative

1 Informative

2-3 Normative

4 Informative

5-15 Normative

Annex A Informative

Annex B Informative

1.5 Notation

The following notations are used in this document to differentiate between notes of clarification, variation

from the specification, and extension points:

Notation Explanation

C#### This identifies a clarification of ambiguity in the target specification. This includes
imprecise statements, omitted information, discrepancies, and errata. This does not
include data formatting clarifications.

V#### This identifies an intended point of variability in the target specification such as the

use of MAY, SHOULD, or RECOMMENDED. (See [RFC2119].) This does not include

extensibility points.

9 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

E#### Identifies extensibility points (such as optional implementation-specific data) in the
target specification, which can impair interoperability.

Throughout this document, variations from the original [ECMA-262] specification are indicated as
follows:

 Double-underline – Text added to describe JScript 5.x behavior.

 Strikethrough – Portions that are not supported by JScript 5.x.

Underlined and strikethrough sections are used together to indicate where JScript 5.x differs from the

behavior described in [ECMA-262].

For browser version and JScript version notation, see section 1.3.

10 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2 Conformance Statements

This section contains a full list of variations, clarification, and extension points in the Microsoft

implementation of [ECMA-262].

 Section 2.1 includes only those variations that violate a MUST requirement in the target specification.

 Section 2.2 describes further variations from MAY and SHOULD requirements.

 Section 2.3 identifies variations in error handling.

 Section 2.4 identifies variations that impact security.

2.1 Normative Variations

The following sub-sections detail the normative variations from MUST requirements in [ECMA-262].

2.1.1 [ECMA-262] Section 6, Source Text

V0001:

SourceCharacter ::

any Unicode character

ECMAScript source text can contain any of the Basic Multilingual Plane Unicode characters. All Unicode
white space characters are treated as white space, and all Unicode line/paragraph separators are treated

as line separators. Non-Latin Unicode characters are allowed in identifiers, string literals, regular
expression literals and comments.

V0002:

In string literals, regular expression literals and identifiers, any Basic Multilingual Plane character (code
point) may also be expressed as a Unicode escape sequence consisting of six characters, namely \u plus

four hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of the
comment. Within a string literal or regular expression literal, the Unicode escape sequence contributes
one character to the value of the literal. Within an identifier, the escape sequence contributes one

character to the identifier.

2.1.2 [ECMA-262] Section 7, Lexical Conventions

V0003:

JScript 5.x also supports a ―conditional compilation‖ feature which enables the inclusion of conditional
text spans, within an ECMAScript source text, that are either not converted into input elements or which
are replaced by alternative text spans prior to conversion into input elements. When converting source

text into input elements, JScript 5.x first does the processing necessary to remove or replace any
conditional text spans and then does the input element conversion, using the results of that processing
as the actual input to the lexical conversion process described below.

The format and processing of conditional text spans is specified in 2.1.9 .

2.1.3 [ECMA-262] Section 7.1, Unicode Format-Control Characters

V0004:

11 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The Unicode format-control characters (i.e., the characters in category ―Cf‖ in the Unicode Character
Database such as left-to-right mark or right-to-left mark) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up

languages). It is useful to allow these in source text to facilitate editing and display.

The format control characters can occur anywhere in the source text of an ECMAScript program. These
characters are removed from the source text before applying the lexical grammar. Since these characters
are removed before processing string and regular expression literals, one must use a. Unicode escape
sequence (see 7.6) to include a Unicode format-control character inside a string or regular expression
literal.

JScript 5.x does not remove category Cf characters from the source text before applying

the lexical grammar.

2.1.4 [ECMA-262] Section 7.3, Line Terminators

V0005:

The following characters are considered to be line terminators:

Code Point
Value

Name Formal Name

\u000A Line Feed <LF>

\u000D Carriage Return <CR>

\u2028 Line separator <LS>

\u2029 Paragraph separator <PS>

V0006:

LineTerminator ::

 <LF>
<CR>

<LS>
<PS>

JScript 5.x does not consider <LS> and <PS> to be line terminator characters.

2.1.5 [ECMA-262] Section 7.4, Comments

V0007:

Syntax:

MultiLineNotAsteriskChar ::

SourceCharacter but not asterisk * or <NUL>

12 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not forward-slash / or asterisk * or <NUL>

2.1.6 [ECMA-262] Section 7.5.3, Future Reserved Words

V0008:

The following words are used as keywords in proposed extensions and are therefore reserved to
allow for the possibility of future adoption of those extensions.

Syntax:

FutureReservedWord :: one of
Abstract enum int short

Boolean export interface static

Byte extends long super

Char final native synchronized

Class float package throws

Const goto private transient

Debugger implements protected volatile

Double import Public

JScript 5.x only considers the following to be FutureReservedWords: class, const,

debugger, enum, export, extends, import, super.

2.1.7 [ECMA-262] Section 7.8.4, String Literals

V0009:

Syntax:

StringLiteral ::

"DoubleStringCharactersopt"

' SingleStringCharactersopt '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not double-quote " or backslash \ or LineTerminator or <NUL>

\EscapeSequence

LineContinuation

SingleStringCharacter ::

SourceCharacter but not single-quote ' or backslash \ or LineTerminator or <NUL>

\EscapeSequence

LineContinuation

13 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x does not allow StringLiterals to contain the <NUL> (\u0000) character.

V0010:

LineContinuation ::

\ LineTerminatorSequence

LineTerminatorSequence ::

<LF>

<CR> [lookahead  <LF>]

<CR> <LF>

EscapeSequence ::

CharacterEscapeSequence

OctalEscapeSequence 0 [lookahead  DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

8
9

JScript 5.x also supports OctalEscapeSequence as specified in [ECMA-262] Annex
B.1.2. That extension replaces the rule EscapeSequence :: 0 [lookahead  DecimalDigit]

with the rule EscapeSequence :: OctalEscapeSequence. See section 2.1.163.

V0011:

CharacterEscapeSequence ::

SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of

' " \ b f n r t v

JScript 5.x does not consider v to be a SingleEscapeCharacter

V0012:

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpreted as having a mathematical value (MV), as

described below or in section [ECMA-262] section 7.8.3.

 The SV of StringLiteral :: "" is the empty character sequence.

 The SV of StringLiteral :: '' is the empty character sequence.

 The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

 The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

14 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

 The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the
CV of DoubleStringCharacter.

 The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.



V0013:

 The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the
CharacterEscapeSequence.

 The CV of EscapeSequence :: 0 [lookahead  DecimalDigit]is a <NUL> character (Unicode value

0000).

 The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

 The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

 The CV of EscapeSequence :: 8 is an 8 character (Unicode value 0038).

 The CV of EscapeSequence :: 9 is a 9 character (Unicode value 0039).

V0014:

The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code point value is
determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Point Value Name Symbol

\b \u0008 backspace <BS>

\t \u0009 horizontal tab <HT>

\n \u000A line feed (new
line)

<LF>

\v \u000B vertical tab <VT>

\f \u000C form feed <FF>

\r \u000D carriage return <CR>

\" \u0022 double quote "

\' \u0027 single quote '

\\ \u005C backslash \

JScript 5.x does not consider v to be a SingleEscapeCharacter.

V0015:

15 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

NOTE: A 'LineTerminator' character cannot appear in a string literal, even if preceded by a backslash \.

The correct way to cause a line terminator character to be part of the string value of a string literal is to
use an escape sequence such as \n or \u000A.

JScript 5.x allows a string literal to continue across multiple lines by including a \ as the

last character of each continued line. The \ and the LineTerminatorSequence that follow it
are not included in the value of the string literal.

2.1.8 [ECMA-262] Section 7.8.5, Regular Expression Literals

V0016:

The productions below describe the syntax for a regular expression literal and are used by the input
element scanner to find the end of the regular expression literal. The strings of characters comprising the

RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular
expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not extend the
RegularExpressionBody and RegularExpressionFlags productions or the productions used by these

productions.

Contrary to the above restriction, JScript 5.x extends the RegularExpressionBody

production by excluding the occurrence of <NUL> as a RegularExpressionchars or

RegularExpressionFirstChar. It also changes the RegularExpressonFlags production
to exclude all possible flag characters other than 'g', 'i', and 'm'

V0017:

Syntax:

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::

RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
NonTerminator but not * or \ or / or <NUL>

BackslashSequence
RegularExpressionClass

RegularExpressionChar ::

NonTerminator but not \ or / or <NUL>

BackslashSequence

RegularExpressionClass

BackslashSequence ::
\ NonTerminator

16 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x throws a RegExpError exception rather than a SyntaxError exception if the

NonTerminator position of a BackslashSequence is occupied by a LineTerminator.

V0018:

Syntax:

NonTerminator ::

SourceCharacter but not LineTerminator

JScript 5.x allows <LS> and <PS> to occur in regular expression literals because it does

not consider them to be line terminator characters.

V0019:

Syntax:

RegularExpressionClass ::

[RegularExpressionClassChars]

RegularExpressionClassChars ::

[empty]

RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::

NonTerminator but not] or \ or <NUL>
BackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart RegExpFlag

RegExpFlag :: one of
g i m

2.1.9 [ECMA-262] Section 7.9+1, Conditional Source Text Processing

V0020:

When converting source text into input elements, JScript 5.x first does the processing necessary to
remove or replace any conditional text spans and then does the input element conversion using
the results of that processing as the actual source text input to the identification of lexical input
elements.

Each Program (see [ECMA-262] section 14), whether presented as either a discrete source text

or as the argument to the eval built-in function, and each FunctionBody (see clause 13) processed

by the standard built-in Function constructor ([ECMA-262] section 15.3.2.1) has conditional

source text processing performed independently upon it.

NOTE

17 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

This specification defines conditional source text processing as if it was performed over an entire source
text prior to any input element identification. It is an unobservable implementation detail whether this
processing is actually performed in that manner or if it is performed incrementally interweaved with input

element identification.

2.1.10 [ECMA-262] Section 7.9+1.1, Global State

V0021:

The following state is shared by the conditional source text processing of all independent source texts
that make up an ECMAScript program. The state is initialized as defined below prior to the first such
processing.

 SubstitutionEnabled Boolean flag with an initial value of false.

 CCvariables A set of associations between string valued keys and values. The keys are

strings. The values may be either ECMAScript Number ([ECMA-262] section 8.5) or Boolean

([ECMA-262] section 8.3) values. The initial associations are defined in the following table:

Key Initial Value

"_win32" Defined as true if this JScript 5.x

implementation is a Microsoft 32-bit-based

implementation. Otherwise this association is not

initially defined.

"_win64" Defined as true if this JScript 5.x

implementation is a Microsoft 64-bit-based

implementation. Otherwise this association is not

initially defined.

"_x86" Defined as true when running on a processor

using the x86-based architecture. Otherwise this

association is not initially defined.

"_ia64" Defined as true when running on a processor

using the Itanium 64-bit architecture. Otherwise

this association is not initially defined.

"_amd64" Defined as true when running on a processor

using the x64 architecture. Otherwise this

association is not initially defined.

"_jscript" True

"_jscript_build" Number value that identifies the specific build of

the JScript 5.x implementation that is running.

"_jscript_version" Number value representing the version of the
JScript 5.x language implementation. The value
5.7 indicates that the implementation only
supports features of the JScript 5.7 language.
The value 5.8 indicates that the implementation

18 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

supports both 5.7 and 5.8 language features.

"_microsoft" Defined as true when running on a JScript 5.x
implementation provided by Microsoft. Otherwise
this association is not initially defined.

2.1.11 [ECMA-262] Section 7.9+1.2, Conditional Processing Algorithm

V0022:

For each source text to be processed let source be the original source text (a sequence of Unicode

characters) and let output initially be an empty sequence of Unicode characters. Let IfNestingLevel be 0.

Processing of source proceeds by recognizing specific input elements from source and then taking

specified actions. The processing is organized into several ―states‖. The specific input elements that are
recognized and the subsequent semantic action that is taken varies among states. The semantic action
taken for a recognized input element may include transitioning to a different state. Processing of a source
text begins by recognizing CCInputElementState0 if SubstitutionEnabled is false and
CCInputElementState1 if SubstitutionEnabled is true.

The input elements for conditional processing are defined by the following grammar, which has Unicode
characters as terminal symbols. Some rules of the grammar are defined using rules of the ECMAScript
lexical grammar.

V0023:

Syntax

NOTE

CCInputElementState0 is recognized during top level conditional processing when SubstitutionEnabled is

false. When recognizing a RegularExpressionLiteral in this state the contextual distinction between

RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section 7) must be respected.

CCInputElementState0 ::

RegularExpressionLiteral

StringLiteral

CCOn

CCSet0

CCIf0

CCMultiLineComment0

CCSingleLinecomment0
SourceCharacter

CCOn ::

@ CCOnId

/*@ CCOnId
//@ CCOnId

19 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

CCOnId ::

cc_on [lookahead  IdentifierPart]

CCSet0 ::

@set [lookahead  IdentifierPart]

CCIf0 ::

@if [lookahead  IdentifierPart]

CCMultiLineComment0 ::

/* [lookahead ≠ CCOnId] MultiLineCommentCharsopt */

SingleLineComment0 ::

// [lookahead ≠ CCOnId] SingleLineCommentCharsopt

V0024:

Semantics

If CCInputElementState0 cannot be recognized because there are no remaining

characters in source then Conditional Source processing is completed and the

characters of the output supply the Unicode characters for subsequent input

element processing. If CCInputElementState0 cannot be recognized and there

are characters in source a SyntaxError exception is thrown.

The productions CCInputElementState0 :: RegularExpressionLiteral,

CCInputElementState0 :: StringLiteral, CCInputElementState0 ::

CCMultiLineComment0, CCInputElementState0 :: CCSingleLinecomment0, and

CCInputElementState0 :: SourceCharacter upon recognition perform the

following actions:

1. Append to the end of output, in left to right sequence, the Unicode

characters from source that were recognized by the production. Remove

the recognized characters from source.

2. Use CCInputElementState0 to recognize the next input element from

source.

The production CCInputElementState0 :: CCOn upon recognition performs the

following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized

characters from source.

3. Use CCInputElementState1 to recognize the next input element from

source.

The production CCInputElementState0 :: CCSet0 upon recognition performs

the following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized

characters from source.

20 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

3. Use CCInputElementStateSetLHS to recognize the next input element

from source.

The production CCInputElementState0 :: CCIf0 upon recognition performs the

following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized

characters from source.

3. Increment the value of IfNestingLevel by 1.

4. Use CCInputElementStateIfPredicate to recognize the next input

element from source.

V0025:

Syntax

NOTE

CCInputElementState1 is recognized during active conditional processing when SubstitutionEnabled is
true. This may be at the top level or in the clause of an @if statement that represents the ―true‖

condition. When recognizing a RegularExpressionLiteral in this state the contextual distinction between

RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section 7) must be respected.

CCInputElementState1 ::

RegularExpressionLiteral

StringLiteral

CCOn

CCSet1

CCIf1

CCElif1

CCElse1

CCEnd1

CCSubstitution1

CCStartMarker

CCEndMarker

CCMultiLineComment1

CCSingleLinecomment1
SourceCharacter

CCSet1 ::

@set [lookahead  IdentifierPart]

/*@set [lookahead  IdentifierPart]

//@set [lookahead  IdentifierPart]

CCIf1 ::

@if [lookahead  IdentifierPart]

/*@if [lookahead  IdentifierPart]

//@if [lookahead  IdentifierPart]

21 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

CCElif1 ::

@elif [lookahead  IdentifierPart]

/*@elif [lookahead  IdentifierPart]

//@elif [lookahead  IdentifierPart]

CCElse1 ::

@else [lookahead  IdentifierPart]

/*@else [lookahead  IdentifierPart]

//@else [lookahead  IdentifierPart]

CCEnd1 ::

@end [lookahead  IdentifierPart]

/*@end [lookahead  IdentifierPart]

//@end [lookahead  IdentifierPart]

CCSubstitution1 ::

@ CCSubIdentifier

/*@ CCSubIdentifier
//@ CCSubIdentifier

CCStartMarker ::

/*@

//@

CCEndMarker ::

@*/

CCMultiLineComment1 ::

/* [lookahead ≠ @] MultiLineCommentCharsopt */

SingleLineComment1 ::

// [lookahead ≠ @] SingleLineCommentCharsopt

CCSubIdentifer ::

 [lookahead  CCKeyword] IdentifierName

CCKeyword ::

cc_on

set

if

elif

else
end

V0026:

22 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Semantics

If CCInputElementState1 cannot be recognized because there are no remaining

characters in source then Conditional Source processing is completed and the

characters of the output supply the Unicode characters for subsequent input

element processing. If CCInputElementState1 cannot be recognized and there

are characters in source a SyntaxError exception is thrown.

V0027:

The productions CCInputElementState1 :: RegularExpressionLiteral,

CCInputElementState1 :: StringLiteral, CCInputElementState1 ::

CCMultiLineComment1, CCInputElementState1 :: CCSingleLinecomment1, and

CCInputElementState1 :: SourceCharacter upon recognition perform the

following actions:

1. Append to the end of output, in left to right sequence, the Unicode

characters from source that were recognized by the production. Remove

the recognized characters from source.

2. Use CCInputElementState1 to recognize the next input element from

source.

V0028:

The productions CCInputElementState1 :: CCOn, CCInputElementState1 ::

CCStartMarker , CCInputElementState1 :: CCEndMarker upon recognition

perform the following actions:

1. Append a <SP> character to the end of output. Remove the recognized

characters from source.

2. Use CCInputElementState1 to recognize the next input element from

source.

V0029:

The production CCInputElementState1 :: CCSet1 upon recognition performs

the following actions:

1. Append a <SP> character to the end of output. Remove the recognized

characters from source.

2. Use CCInputElementStateSetLHS to recognize the next input element

from source.

V0030:

The production CCInputElementState1 :: CCIf1 upon recognition performs the

following actions:

1. Append a <SP> character to the end of output. Remove the recognized

characters from source.

2. Increment the value of IfNestingLevel by 1.

3. Use CCInputElementStateIfPredicate to recognize the next input

element from source.

V0031:

23 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The production CCInputElementState1 :: CCElif1 upon recognition performs

the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

V0032:

The production CCInputElementState1 :: CCElse1 upon recognition performs

the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

V0033:

The production CCInputElementState1 :: CCEnd upon recognition performs the

following actions:

1. Append a <SP> character to the end of output. Remove the recognized

characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Decrement the value of IfNestingLevel by 1.

4. Use CCInputElementState1 to recognize the next input element from

source.

V0034:

The production CCInputElementState1 :: CCSubstitution1 upon recognition

performs the following actions:

1. Let var be the string of characters recognized as the CCSubIdentifier

element of CCSubstitution1.

2. If the value of var is a key of CCVariables, then let the value be the

associated value. Otherwise, let value be the string "NaN"

3. Let value be ToString(value)

4. Append the characters of the string value of value to the end of output.

5. Remove the recognized characters from source.

6. Use CCInputElementStateIfPredicate to recognize the next input

element from source.

V0035:

Syntax

NOTE

CCInputElementStateSetLHS is recognized during active conditional processing of the body
of a @set statement.

CCInputElementStateSetLHS ::
WhiteSpaceopt @ IdentifierName WhiteSpaceopt = CCExpression

24 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

V0036:

Semantics

If CCInputElementStateSetLHS cannot be recognized a SyntaxError exception

is thrown.

The production CCInputElementStateSetLHS :: WhiteSpaceopt @

IdentifierName WhiteSpaceopt = CCExpression upon recognition performs the

following actions:

1. Let setName be the string of characters recognized as the

IdentifierName element of CCSubstitution1.

2. Let value be the result of evaluating CCExpression.

3. Create an association within CCVariables that has a key with the string

value of setName and a value of value. If an association with that key

already exists, replace it.

4. Remove the recognized characters from source.

5. Use CCInputElementState1 to recognize the next input element from

source.

V0037:

Syntax

NOTE

CCInputElementStateIfPredicate is recognized during active conditional processing of the
predicate portion of a @if or @elif statement.

CCInputElementStateIfPredicate ::

WhiteSpaceopt (CCExpression WhiteSpaceopt)

V0038:

Semantics

If CCInputElementStateIfPredicate cannot be recognized a SyntaxError

exception is thrown.

The production CCInputElementStateSetIfPredicate :: WhiteSpaceopt (

CCExpression WhiteSpaceopt) upon recognition performs the following

actions:

1. Let predicate be the result of evaluating CCExpression.

2. Increment the value of IfNestingLevel by 1.

3. Set SkippedIfNestingLevel to 0.

4. Remove the recognized characters from source.

5. If ToBoolean(predicate) is true, then use CCInputElementState1 to

recognize the next input element from source.

6. Otherwise, use CCInputElementStateFalseThen to recognize the next

input element from source.

V0039:

25 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Syntax

NOTE

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if
statement for which the true clause has not yet been processed. The current clause may be
a ―then‖ clause, an @elif clause, or an @else clause.

CCInputElementStateFalseThen ::

@if [lookahead  IdentifierPart]

@elif [lookahead  IdentifierPart]

@else [lookahead  IdentifierPart]

@end [lookahead  IdentifierPart]

SourceCharacter

V0040:

Semantics

If CCInputElementStateFalseThen cannot be recognized a SyntaxError

exception is thrown.

The production CCInputElementStateFalseThen :: @if [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

3. Use CCInputElementStateFalseThen to recognize the next input element

from source.

V0041:

The production CCInputElementStateFalseThen :: @elif [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen

to recognize the next input element from source.

3. Otherwise use CCInputElementStateIfPredicate to recognize the next

input element from source.

V0042:

The production CCInputElementStateFalseThen :: @else [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen

to recognize the next input element from source.

3. Otherwise use CCInputElementState1 to recognize the next input

element from source.

V0043:

The production CCInputElementStateFalseThen :: @end [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Remove the recognized characters from source.

26 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseThen to recognize the next input element

from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from

source.

V0044:

The production CCInputElementStateFalseThen :: SourceCharacter upon

recognition performs the following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseThen to recognize the next input element

from source.

V0045:

Syntax

NOTE

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if
statement for which the true clause has already been processed. It is also used during
processing of all clauses of a @if statement that is nested within a false clause of an
enclosing @if statement. The current clause may be a ―then‖ clause, an @elif clause or an
@else clause.

CCInputElementStateFalseIfTail ::

@if [lookahead  IdentifierPart]

@elif [lookahead  IdentifierPart]

@else [lookahead  IdentifierPart]

@end [lookahead  IdentifierPart]

SourceCharacter

V0046:

Semantics

If CCInputElementStateFalseIfTail cannot be recognized a SyntaxError

exception is thrown.

The production CCInputElementStateFalseIfTail :: @if [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

3. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

V0047:

27 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The productions CCInputElementStateFalseIfTail :: @elif [lookahead 

IdentifierPart] and CCInputElementStateFalseIfTail :: @else [lookahead 

IdentifierPart] upon recognition perform the following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

V0048:

The production CCInputElementStateFalseIfTail :: @end [lookahead 

IdentifierPart] upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from

source.

V0049:

The production CCInputElementStateFalseIfTail :: SourceCharacter upon

recognition performs the following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element

from source.

V0050:

Syntax

CCExpression ::

CCLogicalANDExpression

CExpression WhiteSpaceopt || CCLogicalANDExpression

CCLogicalANDExpression ::

CCBitwiseORExpression

CCcLogicalANDExpression WhiteSpaceopt && CCBitwiseORExpression

CCBitwiseORExpression ::

CCBitwiseXORExpression
CCBitwiseORExpression WhiteSpaceopt | CCBitwiseXORExpression

CCBitwiseXORExpression ::

CCBitwiseANDExpression

CCBitwiseXORExpression WhiteSpaceopt ^ CCBitwiseANDExpression

28 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

CCBitwiseANDExpression ::

CCEqualityExpression

CCBitwiseANDExpression WhiteSpaceopt & CCEqualityExpression

CCEqualityExpression ::

CCRelationalExpression

CCEqualityExpression WhiteSpaceopt == CCRelationalExpression

CCEqualityExpression WhiteSpaceopt!= CCRelationalExpression

CCEqualityExpression WhiteSpaceopt === CCRelationalExpression
CCEqualityExpression WhiteSpaceopt !== CCRelationalExpression

CCRelationalExpression ::

CCShiftExpression

CCRelationalExpression WhiteSpaceopt < CCShiftExpression

CCRelationalExpression WhiteSpaceopt > CCShiftExpression

CCRelationalExpression WhiteSpaceopt <= CCShiftExpression
CCRelationalExpression WhiteSpaceopt >= CCShiftExpression

CCShiftExpression ::

CCAdditiveExpression

CCShiftExpression WhiteSpaceopt << CCAdditiveExpression

CCShiftExpression WhiteSpaceopt >> CCAdditiveExpression
CCShiftExpression WhiteSpaceopt >>> CCAdditiveExpression

CCAdditiveExpression ::

CCMultiplicativeExpression

CCAdditiveExpression WhiteSpaceopt + CCMultiplicativeExpression
CCAdditiveExpression WhiteSpaceopt – CCMultiplicativeExpression

CCMultiplicativeExpression ::

CCUnaryExpression

CCMultiplicativeExpression WhiteSpaceopt * CCUnaryExpression

CCMultiplicativeExpression WhiteSpaceopt / CCUnaryExpression
CCMultiplicativeExpression WhiteSpaceopt % CCUnaryExpression

UnaryExpression ::

CCPrimaryExpression

WhiteSpaceopt + CCUnaryExpression

WhiteSpaceopt - CCUnaryExpression

WhiteSpaceopt ~ CCUnaryExpression
WhiteSpaceopt! CCUnaryExpression

CCPrimaryExpression ::

CCVariable

CCLiteral
WhiteSpaceopt (Expression)

29 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

CCLiteral ::

WhiteSpaceopt true [lookahead  IdentifierPart]

WhiteSpaceopt false [lookahead  IdentifierPart]

WhiteSpaceopt Infinity [lookahead  IdentifierPart]

WhiteSpaceopt NumericLiteral

CCVariable ::

WhiteSpaceopt @ IdentifierName

V0051:

Semantics

Unless otherwise specified below, the productions of CCExpression are

evaluated using the same semantic rules as the analogous productions of the

ECMAScript syntactic grammar for Expression in [ECMA-262] section 11.

However, only values of types Number and Boolean can occur during the

evaluation of CCExpression productions so any semantic steps that are relative

to other types of values are not relevant.

V0052:

The production CCLiteral :: WhiteSpaceopt true [lookahead  IdentifierPart] is

evaluated by returning the value true.

V0053:

The production CCLiteral :: WhiteSpaceopt false [lookahead  IdentifierPart]

is evaluated by returning the value false.

V0054:

The production CCLiteral :: WhiteSpaceopt Infinity [lookahead  IdentifierPart]

is evaluated by returning the value +∞.

V0055:

The production CCVariable :: WhiteSpaceopt @ IdentifierName is evaluated by

performing the following steps:

1. Let var be the string of characters recognized as the IdentifierName

element of CCVariable.

2. If the value of var is a key of CCVariables, then let value be the

associated value. Otherwise, let value be NaN.

3. Return value.

2.1.12 [ECMA-262] Section 8, Types

V0056:

A value is an entity that takes on one of nine eleven types. There are nineeleven types (Undefined, Null,
Boolean, String, Number, Object, SafeArray, VarDate, Reference, List, and Completion). Values of type

30 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Reference, List, and Completion are used only as intermediate results of expression evaluation and
cannot be stored as properties of objects.

2.1.13 [ECMA-262] Section 8.5, The Number Type

V0057:

In some implementations, external code might be able to detect a difference between various Non-a-
Number values, but such behaviour is implementation-dependent; to ECMAScript code, all NaN values
are indistinguishable from each other.

JScript 5.x does not normalize all internal NaN values to a single canonical NaN;

therefore, external code may be able to observe multiple distinct NaN values.

2.1.14 [ECMA-262] Section 8.6.2, Internal Properties and Methods

V0058:

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]]
chain must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]
property must eventually lead to a null value). Whether or not a native object can have a host object as
its [[Prototype]] depends on the implementation.

JScript 5.x does not permit a native object to have a host object as its [[Prototype]].

2.1.15 [ECMA-262] Section 8.6.2.2, [[Put]] (P, V)

V0059:

When the [[Put]] method of O is called with property P and value V, the following steps

are taken:

Call the [[CanPut]] method of O with name P.

If Result(1) is false, return.

If O doesn‘t have a property with name P, go to step 6.

Set the value of the property to V. The attributes of the property are not

changed.

Return.

Create a property with name P, set its value to V and give it empty

attributes.

a. Let q be the same value as O.

b. Let q be the value of the [[Prototype]] property of q.

c. If q is null, return.

d. If q doesn‘t have a property with name P, go to step 6.b.

e. If the property of q with name P does not have the DontEnum attribute,

return.

f. Give the property with the name P of O the DontEnum attribute.

Return.

In JScript 5.x a property created using [[Put]] is given the DontEnum attribute if

it shadows a prototype property with the same name that already has the

DontEnum attribute.

31 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.16 [ECMA-262] Section 8.7, The Reference Type

V0060:

A Reference is a reference to a property of an object. A Reference consists of two components,

the base object and the property name.

The following abstract operations are used in this specification to access the components of
references:

 GetBase(V). Returns the base object component of the reference V; however if the
type of the base object component is String return the result of calling ToObject with
the base object component as the argument.

 GetPropertyName(V). Returns the property name component of the reference V.

2.1.17 [ECMA-262] Section 8.7.1, GetValue (V)

V0061:

1. If Type(V) is not Reference, return V.

a. If the type of the base object component of V is String, then go to step

6.

2. Call GetBase(V).

3. If Result(2) is null, throw a ReferenceError TypeError exception.

4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the

property name.

5.Return Result(4).

6.Let str be the String that is the base object component of V.

7.Call GetPropertyName(V).

8.If Result(6) is not an array index, then go to step 2.

9.Let index be ToUint32(Result(6)).

10.If index is greater or equal to the number of characters in str, then go to

step 2

11.Return a String of length 1 that has as its only character the character at
position index of str.

JScript 5.x throws a TypeError rather than ReferenceError when an attempt is made to

get the value of a Reference value with a null base. This typically occurs when accessing
an undeclared variable or function name.

Steps 6-11 permit the individual characters of a String value to be retrieved as if they

were properties of an object. Note that JScript 5.x only supports property access to
individual characters for String values. It does not support such property access for
String wrapper objects.

2.1.18 [ECMA-262] Section 9.1, ToPrimitive

V0062:

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The

operator ToPrimitive converts its value argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour
that type. Conversion occurs according to the following table:

32 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

SafeArray The result equals the input argument (no conversion).

VarDate The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the internal [[DefaultValue]] method of the object,
passing the optional hint PreferredType. The behaviour of the
[[DefaultValue]] method is defined by this specification for all native

ECMAScript objects ([ECMA-262] section 8.6.2.6).

2.1.19 [ECMA-262] Section 9.2, To Boolean

V0063:

The operator ToBoolean converts its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, 0, or NaN; otherwise the

result is true.

String The result is false if the argument is the empty string (its length is
zero); otherwise the result is true.

SafeArray The result is false.

VarDate The result is false.

Object true

33 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.20 [ECMA-262] Section 9.3, ToNumber

V0064:

The operator ToNumber converts its argument to a value of type Number according to the

following table:

Input Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument

is false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

SafeArray Throw a TypeError exception.

VarDate The result is the Number that represents the internal numerical value of
the VT Date value.

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

2.1.21 [ECMA-262] Section 9.8, ToString

V0065:

The operator ToString converts its argument to a value of type String according to the following
table:

34 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Input Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true".

If the argument is false, then the result is "false".

Number See note below.

String Return the input argument (no conversion)

SafeArray Apply the following steps:

1. Call ToObject(input argument).

2. Call ToString(Result(1)).
3. Return Result(2).

VarDate Return a String with contents representing the VarDate value, using the

same representation format as that which is used by

Date.prototype.toString ([ECMA-262] section 15.9.5.2).

Object Apply the following steps:

Call ToPrimitive(input argument, hint String).

Call ToString(Result(1)).

Return Result(2).

2.1.22 [ECMA-262] Section 9.9, ToObject

V0066:

The operator ToObject converts its argument to a value of type Object according to the following
table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[value]] property is set to the

value of the boolean. See [ECMA-262] section 15.6 for a description

of Boolean objects.

Number Create a new Number object whose [[value]] property is set to the

value of the number. See [ECMA-262] section 15.7 for a description

of Number objects.

35 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

String Create a new String object whose [[value]] property is set to the value

of the string. See [ECMA-262] section 15.5 for a description of String

objects.

SafeArray Create a new VBArray object as if by executing the ECMAScript
expression: new VBArray(argument), where argument is the SafeArray

value. See [MS-ES3EX]section 2.3.15 for a description of VBArray

objects.

VarDate Throw a TypeError exception.

Object The result is the input argument (no conversion).

2.1.23 [ECMA-262] Section 10.1.3, Variable Instantiation

V0067:

For function code: for each formal parameter, as defined in the FormalParameterList, create a property of

the variable object whose name is the Identifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller as arguments to [[Call]]. If the caller
supplies fewer parameter values than there are formal parameters, the extra formal parameters have
value undefined. If two or more formal parameters share the same name, hence the same property, the
corresponding property is given the value that was supplied for the last parameter with this name. If the
value of this last parameter was not supplied by the caller, the value of the corresponding property is
undefined. If any formal parameter has the name arguments, mark the current execution context as

having a partially accessible arguments object. This state is used in [MS-ES3EX] section 2.3.15.

V0068:

For each FunctionDeclaration or FunctionExpression in the code, in source text order, do one of the
following depending upon the form of the FunctionDeclaration or FunctionExpression:

 If the production is of the form FunctionDeclaration : function (FormalParameterListopt) {

FunctionBody } or FunctionExpression : function (FormalParameterListopt) { FunctionBody }

do nothing.

 If the production is of the form FunctionDeclaration : function Identifier (

FormalParameterListopt) { FunctionBody } or FunctionExpression : function Identifier (

FormalParameterListopt) { FunctionBody } create a property of the variable object whose name

is the Identifier in the FunctionDeclaration or FunctionExpression, whose value is the result
returned by creating a Function object as described in 13, and whose attributes are determined
by the type of code. If the variable object already has a property with this name, replace its value
and attributes. Semantically, this step must follow the creation of FormalParameterList

properties.

 If the production is of the form FunctionDeclaration : JScriptFunction or FunctionExpression :
JScriptFunction perform the following steps:

1. Let func be the result returned by creating a Function object as described in 13.

2. Process the FunctionBindingList element of the JScriptFunction as described in 13 and using func
and the attributes for the current type of code as processing arguments.

36 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

In JScript 5.x each FunctionExpression is also included in the above

processing step. This means that the value of such a FunctionExpression may

be referenced by name within the code that contains it.

V0069:

For each Catch, VariableDeclaration or VariableDeclarationNoIn in the code, create a property of the

variable object whose name is the Identifier in the Catch, VariableDeclaration or VariableDeclarationNoIn,
whose value is undefined and whose attributes are determined by the type of code. If there is already a
property of the variable object with the name of a declared variable, the value of the property and its
attributes are not changed. Semantically, this step must follow the creation of the FormalParameterList
and FunctionDeclaration properties. In particular, if a declared variable has the same name as a declared
function or formal parameter, the variable declaration does not disturb the existing property.

2.1.24 [ECMA-262] Section 10.1.8, Arguments Object

V0070:

When control enters an execution context for function code, an arguments object is created and
initialised as follows:

 The value of the internal [[Prototype]] property of the arguments object is the original Object

prototype object, the one that is the initial value of Object.prototype (see [ECMA-262]

section 15.2.3.1).

 A property is created with name callee and property attributes { DontEnum }. The initial value

of this property is the Function object being executed. This allows anonymous functions to be
recursive.

 A property is created with name caller and property attributes { DontEnum }. Let C be the

execution context that performed the call that caused the current execution context to be
entered. The initial value of the caller property is null if C is an execution context for global

code, eval code, or a built-in or host function object. Otherwise C is an execution context for
function code and the initial value of the caller property is arguments object that was created

when C was entered.

2.1.25 [ECMA-262] Section 10.2, Entering an Execution Context

V0071:

In JScript 5.x the sharing of storage, between the properties of the arguments object and

the corresponding properties to the activation object, ceases when execution of the
execution context that created the arguments object completes.

2.1.26 [ECMA-262] Section 10.2.1, Global Code

V0072:

 The scope chain is created and initialised to contain the global object and no others.

 Variable instantiation is performed using the global object as the variable object and using

property attributes { DontEnum, DontDelete }.

 The this value is the global object.

37 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x variable instantiations creates properties of the global object that have the

DontEnum attribute.

2.1.27 [ECMA-262] Section 10.2.2, Eval Code

V0073:

When control enters an execution context for eval code, the previous active execution context, referred

to as the calling context, is used to determine the scope chain, the variable object, and the this value. If
there is no calling context, then initialising the scope chain, variable instantiation, and determination of
the this value are performed just as for global code.

 The scope chain is initialised to contain the same objects, in the same order, as the calling
context's scope chain. This includes objects added to the calling context's scope chain by with

statements and catch clauses.

 Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

 The this value is the same as the this value of the calling context.

In JScript 5.x an additional object with no properties is added to the front of the

scope chain for eval code. This object is called the eval scope. Eval code may get,

but may not put to, the value of a property of the calling context‘s variable object
that has the name arguments and which is the actual arguments object of the
calling context. The first time the eval code attempts to put to such a property a new
property named arguments is added to the eval scope.

2.1.28 [ECMA-262] Section 10.2.3, Function Code

V0074:

 The scope chain is initialised to contain the activation object followed by the objects in the scope

chain stored in the [[Scope]] property of the Function object.

 Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete }.

 The caller provides the this value. If the this value provided by the caller is null or undefined,
or if the Type of the this value is VarDate not an object (including the case where it is null), then
the this value is the global object. Otherwise, the result of calling ToObject with the caller
provided this value as the argument is used as the this value for the execution context.

JScript 5.x performs ToObject conversion as part of establishing an execution

context for function code rather than performing the conversions as part of the
Function.prototype.apply and Function.prototype.call methods. Because

of this difference, built-in functions and host functions may receive non-object
values as their this value.

2.1.29 [ECMA-262] Section 11.1.4, Array Initialiser

V0075:

Elision :

,
Elision ,

38 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Semantics

The production ArrayLiteral : [Elisionopt] is evaluated as follows:

1. Create a new array as if by the expression new Array().

2. Evaluate Elision; if not present, use the numeric value zero.
3. Call the [[Put]] method of Result(1) with arguments "length" and

Result(2).
4. Return Result(1).

JScript 5.x sets the length property in step 3 to Result(2)+1. For example, an

ArrayLiteral of the form [,] will have a length of 2 instead of 1 as specified above.

V0076:

The production ArrayLiteral : [ElementList , Elisionopt] is evaluated as

follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.
3. Call the [[Get]] method of Result(1) with argument "length".

4. Call the [[Put]] method of Result(1) with arguments "length" and

(Result(2)+Result(3)).
5. Return Result(1).

If Elision is present, JScript 5.x uses the result of evaluating Elision+1 as Result(2). For

example, an ArrayLiteral of the form [1,2,] has a length of 3 instead of 2 as specified
above.

V0077:

The production ElementList : Elisionopt AssignmentExpression is evaluated as

follows:

1. Create a new array as if by the expression new Array().

Evaluate Elision; if not present, use the numeric value zero.

Evaluate AssignmentExpression.

Call GetValue(Result(3)).

a. If Result(4) is not the value undefined, go to step 5.

b. Call the [[Put]] method of Result(1) with arguments "length" and

(Result(2)+1).

c. Return Result(1).

Call the [[Put]] method of Result(1) with arguments Result(2) and

Result(4).

Return Result(1)

V0078:

The production ElementList : ElementList , Elisionopt AssignmentExpression is

evaluated as follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Evaluate AssignmentExpression.

39 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

4. Call GetValue(Result(3)).
5. Call the [[Get]] method of Result(1) with argument "length".

a. If Result(4) is not the value undefined, go to step 6.

b. Call the [[Put]] method of Result(1) with arguments "length" and

(Result(2)+Result(5)+1).

c. Return Result(1).

6. Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5))

and Result(4).

7. Return Result(1).

If the value of an AssignmentExpression in ElementList is undefined, JScript 5.x treats it

as an elision. It does not create its own property of the array object corresponding to that
array element. However, the length of the array is adjusted to include that element

position.

2.1.30 [ECMA-262] Section 11.1.5, Object Initialiser

V0079:

Syntax

ObjectLiteral :

{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

JScript 5.8 supports the occurrence of a single trailing comma as the last item within an

ObjectLiteral. JScript 5.7 does not support this extension.

V0080:

Semantics

The productions ObjectLiteral : { PropertyNameAndValueList } and

{ PropertyNameAndValueList , } are is evaluated as follows:

1. Evaluate PropertyNameAndValueList.]

2. Return Result(1);

2.1.31 [ECMA-262] Section 11.2.1, Property Accessors

V0081:

The production MemberExpression : MemberExpression [Expression] is

evaluated as follows:

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3. Evaluate Expression.

4. Call GetValue(Result(3)).

5. If the type of Result(2) is String use Result(2), otherwise use the result of

calling Call ToObject(Result(2)).

6. Call ToString(Result(4)).

40 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

7. Return a value of type Reference whose base object is Result(5) and whose
property name is Result(6).

The change to step 5 is necessary to allow the individual characters of String values

to be accessed as properties.

2.1.32 [ECMA-262] Section 11.4.1, The Delete Operator

V0082:

The production UnaryExpression : delete UnaryExpression is evaluated as

follows:

1. Evaluate UnaryExpression.
a. If UnaryExpression consists entirely of the identifier this, throw a

TypeError exception.

2. If Type(Result(1)) is not Reference, return true throw a TypeError

exception.

3. Call GetBase(Result(1)).

a. If Result(3) is the global object, throw a TypeError exception.

4. Call GetPropertyName(Result(1)).

5. Call the [[Delete]] method on Result(3), providing Result(4) as the

property name to delete.
6. Return Result(5).

In JScript 5.x, if UnaryExpression is the identifier this or an explicit reference to a

property of the global object, a TypeError exception is thrown. For example, delete
this.prop or delete window.prop would produce such an exception regardless of
whether or not ―prop‖ actually exists or how it was created. If UnaryExpression is a
simple Identifier that resolves to a property of the global object, the above algorithm
applies.

JScript also throws a TypeError if the value of the UnaryExpression is any Type of

ECMAScript value other than Reference.

2.1.33 [ECMA-262] Section 11.4.3, The typeof Operator

V0083:

The production UnaryExpression : typeof UnaryExpression is evaluated as

follows:

1. Evaluate UnaryExpression.

2. If Type(Result(1)) is not Reference, go to step 4.
3. If GetBase(Result(1)) is null, return "undefined".

4. Call GetValue(Result(1)).

5. Return a string determined by Type(Result(4)) according to the following
table:

41 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Type Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

SafeArray "unknown"

VarDate "date"

Object (native and
doesn‘t implement
[[Call]])

"object"

Object (native and

implements
[[Call]])

"function"

Object (host) Implementation-dependent

JScript 5.x returns object for all

host objects including those that
implement [[Call]].

2.1.34 [ECMA-262] Section 11.6.1, The Addition Operator (+)

V0084:

The addition operator either performs string concatenation or numeric

addition.

The production AdditiveExpression : AdditiveExpression +

MultiplicativeExpression is evaluated as follows:

1. Evaluate AdditiveExpression.

2. Call GetValue(Result(1)).

3. Evaluate MultiplicativeExpression.

4. Call GetValue(Result(3)).

5. Call ToPrimitive(Result(2)).

a. If an exception was thrown during step 5 but not caught, return

undefined. (Execution now proceeds as if no exception were thrown).

6. Call ToPrimitive(Result(4)).

a. If an exception was thrown during step 6 but not caught, return

Result(5). (Execution now proceeds as if no exception were thrown).

42 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12.

(Note that this step differs from step 3 in the comparison algorithm for the

relational operators, by using or instead of and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10.Apply the addition operation to Result(8) and Result(9). See the note below

(11.6.3).

11.Return Result(10).

12.Call ToString(Result(5)).

13.Call ToString(Result(6)).

14.Concatenate Result(12) followed by Result(13).
15.Return Result(14).

The behaviour described by steps 5.a and 6.a is an unintentional implementation

defect that is present in all versions of JScript 5.x up to and including JScript 5.8.

2.1.35 [ECMA-262] Section 11.8.2, The Greater-than Operator (>)

V0085:

The production RelationalExpression : RelationalExpression > ShiftExpression is

evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) < Result(2) with the LeftFirst flag set to

false. (see [ECMA-262] section 11.8.5).
6. If Result(5) is undefined, return false. Otherwise, return Result(5).

ECMAScript generally uses a left-to-right evaluation order; however the ES3

specification of the > operator results in an observable partial right-to-left
evaluation order when the application of ToPrimitive on both operands has visible
side effects. JScript 5.x implements strict left-to-right evaluation order for the

operands of >. Any ToPrimitive side effects caused by evaluating the left operand
are visible before ToPrimitive is applied to the right operand.

2.1.36 [ECMA-262] Section 11.8.3, The Less-than-or-equal Operator (<=)

V0086:

The production RelationalExpression : RelationalExpression <= ShiftExpression

is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) < Result(2) with the LeftFirst flag set to

false (see [ECMA-262] section 11.8.5).11.8.5).
6. If Result(5) is true or undefined, return false. Otherwise, return true.

43 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

ECMAScript generally uses a left-to-right evaluation order; however, the ES3

specification of the <= operator results in an observable partial right-to-left

evaluation order when the application of ToPrimitive on both operands has visible
side effects. JScript 5.x implements strict left-to-right evaluation order for the
operands of <=. Any ToPrimitive side effects caused by evaluating the left operand

are visible before ToPrimitive is applied to the right operand.

2.1.37 [ECMA-262] Section 11.8.5, The Abstract Relational Comparison Algorithm

V0087:

The comparison x < y, where x and y are values, produces true, false, or

undefined (which indicates that at least one operand is NaN). In addition to x

and y the algorithm takes a Boolean flag named LeftFirst as a parameter. The

flag is used to control the order in which operations with potentially visible

side effects are performed upon x and y. It is necessary to ensure left-to-right

evaluation of expressions. The default value of LeftFirst is true and indicates

that the x parameter corresponds to an expression that occurs to the left of

the y parameter‘s corresponding expression. If LeftFirst is false, the reverse is

the case and operations must be performed upon y before x. Such a

comparison is performed as follows:

0. If the LeftFirst flag is true, then

a. Let px be the result of calling Call ToPrimitive(x, hint Number).

b. Let py be the result of calling Call ToPrimitive(x, hint Number).

Else the order of evaluation needs to be reversed to preserve let-to-right

evaluation

a. Let py be the result of calling Call ToPrimitive(x, hint Number).

b. Let px be the result of calling Call ToPrimitive(x, hint Number).

1. Call ToPrimitive(x, hint Number). Use the value of px.

2. Call ToPrimitive(y, hint Number). Use the value of py.

3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16.

(Note that this step differs from step 7 in the algorithm for the addition
operator + in using and instead of or.)

4. Call ToNumber(Result(1)).

5. Call ToNumber(Result(2)).

6. If Result(4) is NaN, return undefined.

7. If Result(5) is NaN, return undefined.

8. If Result(4) and Result(5) are the same number value, return false.

9. If Result(4) is +0 and Result(5) is 0, return false.

10.If Result(4) is 0 and Result(5) is +0, return false.

11.If Result(4) is +, return false.

12.If Result(5) is +, return true.

13.If Result(5) is , return false.

14.If Result(4) is , return true.

15.If the mathematical value of Result(4) is less than the mathematical value

of Result(5)—note that these mathematical values are both finite and not

both zero—return true. Otherwise, return false.

16.If Result(2) is a prefix of Result(1), return false. (A string value p is a

prefix of string value q if q can be the result of concatenating p and some

44 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

other string r. Note that any string is a prefix of itself, because r may be the

empty string.)

17.If Result(1) is a prefix of Result(2), return true.

18.Let k be the smallest nonnegative integer such that the character at

position k within Result(1) is different from the character at position k

within Result(2). (There must be such a k, for neither string is a prefix of

the other.)

19.Let m be the integer that is the code point value for the character at

position k within Result(1).

20.Let n be the integer that is the code point value for the character at

position k within Result(2).

21.If m < n, return true. Otherwise, return false.

2.1.38 [ECMA-262] Section 11.9.3, The Abstract Equality Comparison Algorithm

V0088:

The comparison x == y, where x and y are values, produces true or false.

Such a comparison is performed as follows:

0. If Type(x) is SafeArray or Type(y) is SafeArray, return false.

a. If Type(x) is VarDate or Type(y) is VarDate, return false.

1. If Type(x) is different from Type(y), go to step 14.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is not Number, go to step 11.

5. If x is NaN, return false.

6. If y is NaN, return false.

7. If x is the same number value as y, return true.

8. If x is +0 and y is 0, return true.

9. If x is 0 and y is +0, return true.

10. Return false.

11. If Type(x) is String, then return true if x and y are exactly the same

sequence of characters (same length and same characters in corresponding

positions). Otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or are both

false. Otherwise, return false.

13. Return true if x and y refer to the same object or if they refer to objects

joined to each other (see [ECMA-262] section 13.1.2).13.1.2). Otherwise,

return false.

14. If x is null and y is undefined, return true.

15. If x is undefined and y is null, return true.

16. If Type(x) is Number and Type(y) is String, return the result of the

comparison x == ToNumber(y).

17. If Type(x) is String and Type(y) is Number, return the result of the

comparison ToNumber(x) == y.

18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==

y.

19. If Type(y) is Boolean, return the result of the comparison x ==

ToNumber(y).

45 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

20. If Type(x) is either String or Number and Type(y) is Object, return the

result of the comparison x == ToPrimitive(y).

21. If Type(x) is Object and Type(y) is either String or Number, return the

result of the comparison ToPrimitive(x) == y.

22. Return false.

For JScript 5.x, if either x or y is a host object then the ―same object‖ determination

in step 13 is implementation defined and dependent upon characteristics of the

specific host objects. The method of determination used may be different from the
―same object‖ determination made in step 13 of the Strict Equality Comparison

Algorithm ([ECMA-262] section 11.9.6). If x or y are host objects then

interchanging their values may produce a different result.

2.1.39 [ECMA-262] Section 11.9.6, The Strict Equality Comparison Algorithm

V0089:

The comparison x === y, where x and y are values, produces true or false.

Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.

a. If Type(x) is SafeArray or Type(y) is VarDate, return false.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is not Number, go to step 11.

5. If x is NaN, return false.

6. If y is NaN, return false.

7. If x is the same number value as y, return true.

8. If x is +0 and y is 0, return true.

9. If x is 0 and y is +0, return true.

10. Return false.

11. If Type(x) is String, then return true if x and y are exactly the same

sequence of characters (same length and same characters in corresponding

positions); otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or are both

false; otherwise, return false.

13. Return true if x and y refer to the same object or if they refer to objects

joined to each other (see [ECMA-262] section 13.1.2).13.1.2). Otherwise,

return false.

For JScript 5.x, if either x or y is a host object then the ―same object‖ determination in

step 13 is implementation defined and dependent upon characteristics of the specific host
objects. The method of determination used may be different from the ―same object‖

determination made in step 13 of the Abstract Equality Comparison Algorithm ([ECMA-

262] section 11.9.3). If x or y are host objects, the fact that step 13 returns true does

not imply that step 13 of the Abstract Equality Comparison Algorithm would also return

true for the same values. If x or y are host objects, interchanging their values may

produce a different result.

2.1.40 [ECMA-262] Section 12, Statements

V0090:

46 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Syntax

Statement :

Block

VariableStatement

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

DebuggerStatement
FunctionDeclaration

JScript 5.x allows a FunctionDeclaration to occur as a Statement.

2.1.41 [ECMA-262] Section 12.1, Block

V0091:

Syntax

Block :

{ StatementListopt }

{ StatementListopt };

In JScript 5.x any ambiguity between Block and the sequence Block EmptyStatement are

resolved as Block.

V0092:

Semantics

The productions Block : { } and Block : { }; are is evaluated as follows:

1. Return (normal, empty, empty).

The productions Block : { StatementList } and Block : { StatementListopt };

are is evaluated as follows:

1. Evaluate StatementList.

2. Return Result(1).

2.1.42 [ECMA-262] Section 12.6.3, The for Statement

V0093:

47 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The production IterationStatement : for (ExpressionNoInopt ; Expressionopt ;

Expressionopt) Statement is evaluated as follows:

Step 1 below contains a specification error that is documented in ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. If the first Expression ExpressionNoIn is not present, go to step 4.

Evaluate ExpressionNoIn.

Call GetValue(Result(2)). (This value is not used.)

Let V = empty.

If the first Expression is not present, go to step 10.

Evaluate the first Expression.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) is false, go to step 19.

Evaluate Statement.

If Result(10).value is not empty, let V = Result(10).value

If Result(10).type is break and Result(10).target is in the current label set, go

to step 19.

If Result(10).type is continue and Result(10).target is in the current label

set, go to step 15.

If Result(10) is an abrupt completion, return Result(10).

If the second Expression is not present, go to step 5.

Evaluate the second Expression.

Call GetValue(Result(16). (This value is not used.)

Go to step 5.

Return (normal, V, empty).

V0094:

The production IterationStatement : for (var VariableDeclarationListNoIn ;

Expressionopt ; Expressionopt) Statement is evaluated as follows:

Step 7 below contains a specification error that is documented in ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. Evaluate VariableDeclarationListNoIn.

Let V = empty.

If the first Expression is not present, go to step 8.

Evaluate the first Expression.

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) is false, go to step 1417.

Evaluate Statement.

If Result(8).value is not empty, let V = Result(8).value.

If Result(8).type is break and Result(8).target is in the current label set, go

to step 17.

If Result(8).type is continue and Result(8).target is in the current label set,

go to step 13.

If Result(8) is an abrupt completion, return Result(8).

If the second Expression is not present, go to step 3.

Evaluate the second Expression.

48 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Call GetValue(Result(14)). (This value is not used.)

Go to step 3.

Return (normal, V, empty).

2.1.43 [ECMA-262] Section 12.6.4, The for-in Statement

V0095:

The production IterationStatement : for (LeftHandSideExpression in

Expression) Statement is evaluated as follows:

1. Evaluate the Expression.

2. Call GetValue(Result(1)).

a. If Type(Result(2) is VarDate, return (normal, empty, empty).

b. If Result(2) is either null or undefined, return (normal, empty,

empty).

3. Call ToObject(Result(2)).

4. Let V = empty.

5. Get the name of the next property of Result(3) that doesn‘t have the

DontEnum attribute. If there is no such property, go to step 14.

6. Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).

7. Call PutValue(Result(6), Result(5)).

8. Evaluate Statement.

9. If Result(8).value is not empty, let V = Result(8).value.

10.If Result(8).type is break and Result(8).target is in the current label set,

go to step 14.

11.If Result(8).type is continue and Result(8).target is in the current label

set, go to step 5.

12.If Result(8) is an abrupt completion, return Result(8).

13.Go to step 5.
14.Return (normal, V, empty).

V0096:

The production IterationStatement : for (var VariableDeclarationNoIn in

Expression) Statement is evaluated as follows:

1. Evaluate VariableDeclarationNoIn.

2. Evaluate Expression.

a. If Type(Result(2) is VarDate, return (normal, empty, empty).

b. If Result(2) is either null or undefined, return (normal, empty,

empty).

3. Call GetValue(Result(2)).

4. Call ToObject(Result(3)).

5. Let V = empty.

6. Get the name of the next property of Result(4) that doesn‘t have the

DontEnum attribute. If there is no such property, go to step 15.

7. Evaluate Result(1) as if it were an Identifier; see Error! Reference

ource not found. (yes, it may be evaluated repeatedly).

8. Call PutValue(Result(7), Result(6)).

9. Evaluate Statement.

10. If Result(9).value is not empty, let V = Result(9).value.

49 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

11. If Result(9).type is break and Result(9).target is in the current label set,

go to step 15.

12. If Result(9).type is continue and Result(9).target is in the current label

set, go to step 6.

13. If Result(8) is an abrupt completion, return Result(8).

14. Go to step 6.

15. Return (normal, V, empty).

In JScript 5.x no interations of the Statement are performed and no exception is thrown if

the value of Expression is either null or undefined.

V0097:

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is
implementation dependent. The order of enumeration is defined by the object. Properties of the object

being enumerated may be deleted during enumeration. If a property that has not yet been visited during

enumeration is deleted, then it will not be visited. If new properties are added to the object being
enumerated during enumeration, the newly added properties are not guaranteed to be visited in the
active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is
―shadowed‖ because some previous object in the prototype chain has a property with the same name.

Note that JScript 5.x defines properties (see [ECMA-262] section 6.6.2.2) such that

their DontEnum attribute is inherited from prototype properties with the same name. As
a result of this, any properties that have the same name as built-in properties of a
prototype object that have the DontEnum attribute are not included in an enumeration.

In JScript 5.x the order of property enumeration is high dependent upon dynamic
characteristics of a program including the order in which properties are created and the
order in which individual properties are accessed. There dynamic effects are most

pronounced when enumerable properties are inherited from prototypes. For this reason,
is not possible to provide a generalized specification of properties enumeration order that
applies to all objects. However, in JScript 5.x, if an object inherits no enumerable
properties from its prototypes, the object‘s properties will be enumerated in the order in
which they were created.

2.1.44 [ECMA-262] Section 12.11, The switch Statement

V0098:

Semantics

The ES3 errata state that the following algorithm contains many errors. JScript 5.x

implements the revised algorithms provided by the errata document.

The production CaseBlock : { CaseClauses DefaultClause CaseClauses } is

given an input parameter, input, and is evaluated as follows:

1. Let A be the list of CaseClause items in the first CaseClauses, in source

text order.

For the next CaseClause in A, evaluate CaseClause. If there is no such

CaseClause, go to step 7.

50 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

If input is not equal to Result(2), as defined by the !== operator, go to step

2.

Evaluate the StatementList of this CaseClause.

If Result(4) is an abrupt completion then return Result(4).

Go to step 13.

Let B be the list of CaseClause items in the second CaseClauses, in source

text order.

For the next CaseClause in B, evaluate CaseClause. If there is no such

CaseClause, go to step 15.

If input is not equal to Result(8), as defined by the !== operator, go to step

8.

Evaluate the StatementList of this CaseClause.

If Result(10) is an abrupt completion then return Result(10)

Go to step 18.

For the next CaseClause in A, evaluate the StatementList of this

CaseClause. If there is no such CaseClause, go to step 15.

If Result(13) is an abrupt completion then return Result(13).

Execute the StatementList of DefaultClause.

If Result(15) is an abrupt completion then return Result(15)

Let B be the list of CaseClause items in the second CaseClauses, in source

text order.

For the next CaseClause in B, evaluate the StatementList of this

CaseClause. If there is no such CaseClause, return (normal, empty,

empty).

If Result(18) is an abrupt completion then return Result(18).

Go to step 18.

The production CaseBlock : { CaseClausesopt } is given an input parameter,

input, and is evaluated as follows:

1.Let V = empty.

2.Let A be the list of CaseClause items in source text order.

3.Let C be the next CaseClause in A. If there is no such CaseClause, then

go to step 16.

4.Evaluate C.

5.If input is not equal to Result(4) as defined by the !== operator, then

go to step 3.

6.If C does not have a StatementList, then go to step 10.

7.Evaluate C‘s StatementList and let R be the result.

8.If R is an abrupt completion, then return R.

9.Let V = R.value.

10.Let C be the next CaseClause in A. If there is no such CaseClause,

then go to step 16.

11.If C does not have a StatementList, then go to step 10.

12.Evaluate C‘s StatementList and let R be the result.

13.If R.value is not empty, then let V = R.value.

14.If R is an abrupt completion, then return (R.type, V, R.target).

15.Go to step 10.

16.Return (normal, V, empty).

V0099:

51 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The production CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }

is given an input parameter, input, and is evaluated as follows:

1. Let V = empty.

2.Let A be the list of CaseClause items in the first CaseClauses, in source

text order.

3.Let C be the next CaseClause in A. If there is no such CaseClause, then

go to step 11.

4.Evaluate C.

5.If input is not equal to Result(4) as defined by the !== operator, then

go to step 3.

6.If C does not have a StatementList, then go to step 20.

7.Evaluate C‘s StatementList and let R be the result.

8.If R is an abrupt completion, then return R.

9.Let V = R.value.

10.Go to step 20.

11.Let B be the list of CaseClause items in the second CaseClauses, in

source text order.

12.Let C be the next CaseClause in B. If there is no such CaseClause,

then go to step 26.

13.Evaluate C.

14.If input is not equal to Result(13) as defined by the !== operator,

then go to step 12.

15.If C does not have a StatementList, then go to step 31.

16.Evaluate C‘s StatementList and let R be the result.

17.If R is an abrupt completion, then return R.

18.Let V = R.value.

19.Go to step 31.

20.Let C be the next CaseClause in A. If there is no such CaseClause,

then go to step 26.

21.If C does not have a StatementList, then go to step 20.

22.Evaluate C‘s StatementList and let R be the result.

23.If R.value is not empty, then let V = R.value.

24.If R is an abrupt completion, then return (R.type, V, R.target).

25.Go to step 20.

26.If the DefaultClause does not have a StatementList, then go to step

30.

27.Evaluate the DefaultClause‘s StatementList and let R be the result.

28.If R.value is not empty, then let V = R.value.

29.If R is an abrupt completion, then return (R.type, V, R.target).

30.Let B be the list of CaseClause items in the second CaseClauses, in

source text order.

31.Let C be the next CaseClause in B. If there is no such CaseClause,

then go to step 37.

32.If C does not have a StatementList, then go to step 31.

33.Evaluate C‘s StatementList and let R be the result.

34.If R.value is not empty, then let V = R.value.

35.If R is an abrupt completion, then return (R.type, V, R.target).

36.Go to step 31.

37.Return (normal, V, empty).

52 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.45 [ECMA-262] Section 12.14, The try Statement

V0100:

The production TryStatement : try Block Catch Finally is evaluated as follows:

Step 5 below contains a specification error that is documented in the ES3 errata.

JScript 5.x implements the following algorithm as corrected in the errata document.

1. Evaluate Block.

Let C = Result(1).

If Result(1).type is not throw, go to step 6.

Evaluate Catch with parameter Result(1).

If Result(4).type is not normal, Let C = Result(4).

Evaluate Finally.

If Result(6).type is normal, return C.

Return Result(6).

V0101:

The production Catch : catch (Identifier) Block is evaluated as follows:

1. Let C be the parameter that has been passed to this production.

Create a new object as if by the expression new Object().

Create a property in the object Result(2). The property's name is Identifier,

value is C.value, and attributes are { DontDelete }.

Evaluate Identifier as described in 11.1.2

Call PutValue(Result(t2),C).

Add Result(2) to the front of the scope chain.

Evaluate Block.

Remove Result(2) from the front of the scope chain.

Return Result(5).

JScript 5.x does not create a new scope chain element to contain the binding of a Catch

parameter instead Variable Instantiation (see [ECMA-262] section 10.1.3) creates

variables in the current variable object for all Catch parameters. The parameter

variable of each Catch is initialized, as if by a Simple Assignment, to the actual
parameter value before evaluating the Catch‘s Block.

2.1.46 [ECMA-262] Section 12.14+1, The debugger Statement

V0102:

Syntax

DebuggerStatement :
debugger ;

Description

The debugger statement causes a break point to be entered if a debugger is

available. If a debugger does not exist or is not active this statement has no

observable effect.

V0103:

53 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Semantics

The production DebuggerStatement : debugger ; is evaluated as follows:

1. If a debugger is not available or not active for this statement return

(normal, empty, empty).

2. Suspend execution and enter the debugger.

3. Upon completion of the debugging action, if the debugger supplies a

completion result, return that result; otherwise return (normal, empty,

empty).

2.1.47 [ECMA-262] Section 13, Function Definition

V0104:

Syntax

FunctionDeclaration :

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

FunctionExpression :

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

In JScript 5.x the Identifier of a FunctionDeclaration is optional. However, a

FunctionDeclaration without an Identifier is not instantiated during Variable Instantiation
(10.1.3) and hence has no observable affect upon the evaluation of an ECMAScript
program.

Any ambiguities between the alternatives of FunctionDeclaration and FunctionExpression
are resolved in favour of the first alternative rather than the JScriptFunction alternative.

JScriptFunction :

function FunctionBindingList (FormalParameterListopt) { FunctionBody }

FunctionBindingList :

FunctionBinding

FunctionBindingList

FunctionBinding

FunctionBinding :

SimpleFunctionBinding

MethodBinding
EventHandlerBinding

SimpleFunctionBinding :

Identifier [lookahead  {NameQualifier, EventDesignator}]

54 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

MethodBinding :

ObjectPath NameQualifier Identifier [lookahead  {NameQualifier, EventDesignator}]

EventHandlerBinding :

ObjectPath EventDesignator Identifier

ObjectPath :

Identifier
ObjectPath NameQualifier Identifier

NameQualifier : .

EventDesignator : ::

FormalParameterList :

Identifier
FormalParameterList , Identifier

FunctionBody :

SourceElements

V0105:

Semantics

The productions FunctionDeclaration : function Identifier (

FormalParameterListopt) { FunctionBody } and FunctionExpression : function

Identifier (FormalParameterListopt) { FunctionBody }are is processed for variable

instantiation function declarations as follows:

Step 1 below contains a specification error that is documented in the ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. Create a new Function object as specified in [ECMA-262] section 13.2 with

parameters specified by FormalParameterListopt, and body specified by

FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

2. Create a property of the current variable object (as specified in [ECMA-262]

section 10.1.3) with name Identifier and value Result(1).

V0106:

The productions FunctionDeclaration : JScriptFunction and FunctionExpression :

JScriptFunction are processed for variable instantiation as follows:

1. Create a new Function object as specified in [ECMA-262] section 13.2 with

parameters specified by the FormalParameterListopt element of the

JScriptFunction and body specified by the FunctionBody element. Pass in the

scope chain of the running execution context as the Scope.
2. Return the value Result(1).

55 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x allows a FunctionDeclaration to be evaluated as a Statement. When

either the production FunctionDeclaration : function Identifier (

FormalParameterListopt) { FunctionBody } or the production FunctionDeclaration :

JScriptFunction is evaluated the following step is performed:

1. Return (normal, empty, empty).

V0107:

The production FunctionExpression : function (FormalParameterListopt) {

FunctionBody } is evaluated as follows:

Step 2 below contains a specification error that is documented in the ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. Create a new Function object as specified in [ECMA-262] section 13.2 with

parameters specified by FormalParameterListopt and body specified by

FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

2. Return Result(21).

V0108:

The production FunctionExpression : function Identifier (FormalParameterListopt

) { FunctionBody } and the production FunctionExpression : JScriptFunction are is

evaluated as follows:

1. Create a new object as if by the expression new Object().

2. Add Result(1) to the front of the scope chain.

3. Create a new Function object as specified in [ECMA-262] section 13.2 with

parameters specified by FormalParameterListopt and body specified by

FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

4. Create a property in the object Result(1). The property's name is Identifier,

value is Result(3), and attributes are { DontDelete, ReadOnly }.

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

V0109:

NOTE

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the
Identifier in a FunctionExpression cannot be referenced from and does not affect the scope enclosing the
FunctionExpression.

In JScript 5.x FunctionExpressions are processed during Variable Instantiation ([ECMA-

262] section 10.1.3) and their names may affect the enclosing scope.

When evaluating a FunctionExpression, JScript 5.x does not create the local scope object
in step 1 above and does not create a local binding for the Identifier of the
FunctionExpression (step 4). This means that a reference to the Identifier from within the
FunctionBody of such a FunctionExpression may evaluate to a different value from the
evaluated function object.

56 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

V0110:

The production FunctionBindingList : FunctionBindingList, FunctionBinding is

processed during variable instantiation as follows when passed a function object

func and the attributes attrs as arguments:

1. Process the FunctionBindingList passing func and attrs as the arguments.

2. Process the FunctionBinding passing func and attrs as the arguments.

V0111:

The production FunctionBindingList : FunctionBindingList, FunctionBinding is

processed during variable instantiation as follows when passed a function object

func and the attributes attrs as arguments:

1. Process the FunctionBinding passing func and attrs as the arguments.

V0112:

The production FunctionBinding : SimpleFunctionBinding is processed during

variable instantiation as follows when passed a function object func and the

attributes attrs as arguments:

1. Let id be the Identifier element of the SimpleFunctionBinding.
2. If id is arguments, return.

3. Create a property of the variable object of the running execution context with a

name if id, a value of func, and with the attributes that are contained in attrs.

If the variable object already has a property with this name, replace its value

and attributes.

V0113:

The production FunctionBinding : MethodBinding is processed during variable

instantiation as follows when passed a function object func and the attributes attrs

as arguments:

1. Let objRef be the result of evaluating the ObjectPath element of

MethodBinding.

2. Call PutValue(objRef,func).

3. Return.

V0114:

The production FunctionBinding : EventHandlerBinding is processed during variable

instantiation as follows when passed a function object func and the attributes attrs

as arguments:

1. Let objRef be the result of evaluating the ObjectPath element of

MethodBinding.

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. If Result(3) is not a host object that supports event attachment return.

5. Let eventName be a string containing the text of the Identifier element of

EventHandlerBinding.

6. Perform the host specific action that will associate func as an event handler on

Result(3) for the event named eventName. This action may throw exceptions.

57 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

7. Return.

If the host is Internet Explorer, step 6 above is equivalent to invoking the attachEvent

method of Result(3) passing eventName and func as the arguments.

V0115:

The production ObjectPath : Identifier is evaluated identically to the manner that

the production PrimaryExpression : Identifier would be evaluated for the same

Identifier (see [ECMA-262] section10.1.4).

The production ObjectPath : ObjectPath NameQualifier Identifier is evaluated as

follows:

1. Evaluate ObjectPath.

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. Return a value of type Reference that has a base object of Result(3) and a

property name of Identifier.

2.1.48 [ECMA-262] Section 13.2, Creating Function Objects

V0116:

Given an optional parameter list specified by FormalParameterList, a body specified by FunctionBody, and
a scope chain specified by Scope, a Function object is constructed as follows:

1. If there already exists an object E that was created by an earlier call to this

section's algorithm, and if that call to this section's algorithm was given a

FunctionBody that is equated to the FunctionBody given now, then go to

step 13. (If there is more than one object E satisfying these criteria, choose

one at the implementation's discretion.)

2. Create a new native ECMAScript object and let F be that object.

3. Set the [[Class]] property of F to "Function".

4. Set the [[Prototype]] property of F to the original Function prototype

object as specified in [ECMA-262] section 15.3.3.1.

5. Set the [[Call]] property of F as described in [ECMA-262] section 13.2.1.

6. Set the [[Construct]] property of F as described in [ECMA-262] section

13.2.2.

7. Set the [[Scope]] property of F to a new scope chain ([ECMA-262] section

10.1.4) that contains the same objects as Scope.

8. Set the length property of F to the number of formal properties specified in

FormalParameterList. If no parameters are specified, set the length

property of F to 0. This property is given attributes as specified in [ECMA-

262] section 15.3.5.1.

9. Create a new object as would be constructed by the expression new

Object().

58 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

10. Set the constructor property of Result(9) to F. This property is given

attributes { DontEnum }.

11. Set the prototype property of F to Result(9). This property is given

attributes as specified in [ECMA-262] section 15.3.5.2.

12. Return F.

13. At the implementation's discretion, go to either step 2 or step 14.

14. Create a new native ECMAScript object joined to E and let F be that object.

Copy all non-internal properties and their attributes from E to F so that all

non-internal properties are identical in E and F.

15. Set the [[Class]] property of F to "Function".

16. Set the [[Prototype]] property of F to the original Function prototype

object as specified in [ECMA-262] section 15.3.3.1.

17. Set the [[Call]] property of F as described in [ECMA-262] section 13.2.1.

18. Set the [[Construct]] property of F as described in [ECMA-262] section

13.2.2.

19. Set the [[Scope]] property of F to a new scope chain ([ECMA-262] section

10.1.4) that contains the same objects as Scope.

20. Return F.

JScript 5.x never joins function objects. Step 13 of the above algorithm always goes to

step 2.

2.1.49 [ECMA-262] Section 13.2.2, [[Construct]]

V0117:

When the [[Construct]] property for a Function object F is called, the following steps are taken:

1. Create a new native ECMAScript object.
2. Set the [[Class]] property of Result(1) to "Object".

3. Get the value of the prototype property of the F.

4. If Result(3) is an native object, set the [[Prototype]] property of

Result(1) to Result(3).

5. If Result(3) is a host object or is not an object, set the [[Prototype]]

property of Result(1) to the original Object prototype object as described in

15.2.3.1.

6. Invoke the [[Call]] property of F, providing Result(1) as the this value

and providing the argument list passed into [[Construct]] as the

argument values.

7. If Type(Result(6)) is Object then return Result(6).

8. Return Result(1).

2.1.50 [ECMA-262] Section 15, Native ECMAScript Objects

V0118:

59 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Unless otherwise specified in the description of a particular function, if a function or constructor described
in this section is given more arguments than the function is specified to allow, the behaviour of the
function or constructor is undefined. In particular, an implementation is permitted (but not required) to

throw a TypeError exception in this case.

JScript does not throw an exception when extra arguments when a built-in function is

called with extra arguments. The extra arguments are ignored by the function which
otherwise behaves as specified in this section.

2.1.51 [ECMA-262] Section 15.1, The Global Object

V0119:

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a
function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-
dependent.

In JScript 5.x the global object is a host object rather than a native object. The
[[Class]] property of the global object has the value Object. The JScript 5.x global

object does not actually have a [[Prototype]] property but for all situations described in
this specification it behaves as if it had a [[Prototype]] property whose value was null.
The global object does not inherit any properties from the built-in Object.prototype
object.

2.1.52 [ECMA-262] Section 15.1.2.1, eval(x)

V0120:

If value of the eval property is used in any way other than a direct call (that is, other than by the explicit

use of its name as an Identifier which is the MemberExpression in a CallExpression), or if the eval

property is assigned to, an EvalError exception may be thrown.

JScript 5.x does not restrict usage of the function that is the initial value of the eval

property or restrict assignment to the eval property. It does not throw EvalError in the

situations.

2.1.53 [ECMA-262] Section 15.1.2.2, parseInt (string, radix)

V0121:

When the parseInt function is called, the following steps are taken:

1. Call ToString(string).

2. Let S be a newly created substring of Result(1) consisting of the first

character that is not a StrWhiteSpaceChar and all characters following

that character. (In other words, remove leading white space.)

3. Let sign be 1.

60 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

4. If S is not empty and the first character of S is a minus sign -, let sign

be 1.

5. If S is not empty and the first character of S is a plus sign + or a minus

sign -, then remove the first character from S.

6. Let R = ToInt32(radix).

7. If R = 0, go to step 11.

8. If R < 2 or R > 36, then return NaN.

9. If R = 16, go to step 13.

10. Go to step 14.

11. Let R = 10.

12. If the length of S is at least 1 and the first character of S is ―0‖, then at

the implementation's discretion either let R = 8 or leave R unchanged.

JScript 5.x always sets R=8 in this situation.

13. If the length of S is at least 2 and the first two characters of S are
either ―0x‖ or ―0X‖, then remove the first two characters from S and let

R = 16.

14. If S contains any character that is not a radix-R digit, then let Z be the

substring of S consisting of all characters before the first such

character; otherwise, let Z be S.

15. If Z is empty, return NaN.

16. Compute the mathematical integer value that is represented by Z in
radix-R notation, using the letters A-Z and a-z for digits with values 10

through 35. (However, if R is 10 and Z contains more than 20 significant
digits, every significant digit after the 20th may be replaced by a 0

digit, at the option of the implementation (JScript 5.x replaces digits
after the 20th by a 0); and if R is not 2, 4, 8, 10, 16, or 32, then

Result(16) may be an implementation-dependent approximation to the

mathematical integer value that is represented by Z in radix-R notation

(JScript 5.x does not use an approximation for any values of R.)

17. Compute the number value for Result(16).

18. Return sign  Result(17).

2.1.54 [ECMA-262] Section 15.2.1.1, Object ([value])

V0122:

When the Object function is called with no arguments or with one argument value, the following steps

are taken:

1. If value is null, undefined or not supplied or if Type(value) is VarDate,

create and return a newObject object exactly as if the object constructor

had been called with the same arguments ([ECMA-262] section

15.2.2.1).

2. Return ToObject(value).

61 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.55 [ECMA-262] Section 15.2.2.1, newObject ([value])

V0123:

When the Object constructor is called with no arguments or with one argument value, the following steps

are taken:

1. If value is not supplied, go to step 8.

2. If the type of value is not Object, go to step 5.

3. If the value is a native ECMAScript object, do not create a new object but

simply return value.

4. If the value is a host object, then actions are taken and a result is

returned in an implementation-dependent manner that may depend on

the host object.

JScript 5.x simply returns value if it is a host object.

5. If the type of value is String, return ToObject(value).

6. If the type of value is Boolean, return ToObject(value).

7. If the type of value is Number, return ToObject(value).

8. (The argument value was not supplied or its type was SafeArray,

VarDate, Null or Undefined.)

Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the

Object prototype object.

The [[Class]] property of the newly constructed object is set to

"Object".

The newly constructed object has no [[Value]] property.

Return the newly created native object.

2.1.56 [ECMA-262] Section 15.2.3, Properties of the Object Constructor

V0124:

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

Besides the internal properties and the length property (whose value is 1 0), the Object constructor has

the following properties:

2.1.57 [ECMA-262] Section 15.2.4.2, Object.prototype.toString ()

V0125:

When the toString method is called, the following steps are taken:

0. If the Type of the this value is VarDate, return "[object Object]".

a. If this value is null or undefined use the global object, otherwise

use the result of calling ToObject with the this value as the argument.

b. If Result(0.a) is a host object, return "[object Object]".

1. Get the [[Class]] property of Result(0.a) this object.

2. Compute a string value by concatenating the three strings "[object ",

Result(1), and "]".

3. Return Result(2).

62 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.58 [ECMA-262] Section 15.2.4.3, Object.prototyope.toLocaleString ()

V0126:

This function returns the result of calling toString().

1. If this object is a host object, return "[object]".

2. If the Type of the this value is VarDate, throw a TypeError exception.

3. Call ToObject with the this value as the argument.

4. Let toStr be the result of calling the [[Get]] method of Result(3) passing
"toString" as the argument.

5. If toStr does not have a [[Call]] method, throw a TypeError exception.

6. Return the result of calling the [[Call]] method of toStr passing

Result(3) as the this value and with no other arguments.

2.1.59 [ECMA-262] Section 15.2.4.4, Object.prototype.valueOf ()

V0127:

The valueOf method returns its this value. If the object is the result of calling the Object constructor

with a host object ([ECMA-262] section 15.2.2.1), it is implementation-defined whether valueOf

returns its this value or another value such as the host object originally passed to the constructor.
JScript 5.x returns the this value in this circumstance.

As specified above, JScript 5.x returns its this value without applying any coercions to it.

If this method is called using the JScript 5.x implementations of the
Function.prototype.call or Function.prototype.apply methods and passing either

null or undefined as the this argument, the result is not the global object. If a primitive
Number, String, or Boolean value is passed as the this argument the result is the passed
primitive value rather than a corresponding wrapper object.

2.1.60 [ECMA-262] Section 15.2.4.5, Object.prototyop.hasOwnProperty (V)

V0128:

When the hasOwnProperty method is called with argument V, the following steps are taken:

1. Let O be this object the result of calling ToObject passing the this value

as the argument.

2. Call ToString(V).

3. If O doesn‘t have a property with the name given by Result(2), return

false.
4. Return true.

NOTE

Unlike [[HasProperty]] ([ECMA-262] section 8.6.2.4), this method does

not consider objects in the prototype chain.

2.1.61 [ECMA-262] Section 15.2.4.6, Object.prototype.isPrototype Of (V)

V0129:

When the isPrototypeOf method is called with argument V, the following steps are taken:

63 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. Let O be this object the result of calling ToObject passing the this value

as the argument.

2. If V is not an object, return false.

a.If O and V refer to the same object, return true.

3. Let V be the value of the [[Prototype]] property of V.

4. if V is null, return false

5. If O and V refer to the same object or if they refer to objects joined to

each other ([ECMA-262] section 13.1.2), return true.
6. Go to step 3.

In JScript 5.x, the isPrototypeOf method returns true rather than false if the

this value and the argument are the same object.

2.1.62 [ECMA-262] Section 15.2.4.7, Object.prototype.propertyIsEnumerable (V)

V0130:

When the propertyIsEnumerable method is called with argument V, the following steps are taken:

2. Let O be this object the result of calling ToObject passing the this value

as the argument.

a.If O is a host object, throw a TypeError exception.

3. Call ToString(V).

4. If O doesn‘t have a property with the name given by Result(2), return

false.

5. If the property has the DontEnum attribute, return false.
6. Return true.

NOTE

This method does not consider objects in the prototype chain.

2.1.63 [ECMA-262] Section 15.3.4 Properties of the Function Prototype Object

V0131:

The Function prototype object is itself a Function object (its [[Class]] is "Function") that, when

invoked, accepts any arguments and returns undefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object

prototype object ([ECMA-262] section 15.3.2.1).

It is a function with an ―empty body‖; if it is invoked, it merely returns undefined.

The Function prototype object does not have a valueOf property of its own; however, it inherits the

valueOf property from the Object prototype Object.

From the above specification language it is unclear whether or not the Function prototype

object has all the properties of a Function instance as described in [ECMA-262] section

15.3.5. In addition, [ECMA-262] section 15 states: ―None of the built-in functions

described in this section shall implement the internal [[Construct]] method unless
otherwise specified in the description of a particular function. None of the built-in
functions described in this section shall initially have a prototype property unless

64 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

otherwise specified in the description of a particular function.‖ The Function prototype
object is itself such a built-in function.

In JScript 5.x the Function prototype object does not have a prototype property. It also

does not have [[Construct]] or [[HasInstance]] properties. Because of the lack of
these properties applying the new operator to the Function prototype object or using the

Function prototype object as the right hand operand of the instanceof operator throws a

TypeError exception.

2.1.64 [ECMA-262] Section 15.3.4.2, Function.prototype.toString ()

V0132:

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration FunctionExpression. Note in particular that the use and placement of
white space, line terminators, and semicolons within the representation string is implementation-
dependent.

The representation of a function implemented using ECMAScript code is the exact

sequence of characters used to define the function. The first character of the
representation is the 'f' of function, and the final character is the final '}' of the

function definition. However, if the function was defined using a FunctionExpression which
is immediately surrounded by one or more levels of grouping operators (11.1.6) then the
first character of the representation is the '(' of the outermost such grouping operator

and the final character is the ')' of the outermost such grouping operator.

If the function was created by the Function constructor ([ECMA-262] section 15.3.2.1)

the representation of the function consists of the string 'function anonymous(',

immediately followed by the value of P used in step 16 of the [ECMA-262] section
15.3.2.1 algorithm that created the function, immediately followed by the string ') {',

immediately followed by a <LF> character, immediate followed by the value of body
using in step 16 of the algorithm, immediately followed by a <LF> character and the
character '}'.

If the function is not implemented using ECMAScript code (it is a built-in function or a
host object function), the FunctionBody of the generated representation does not conform
to ECMAScript syntax. Instead, the FunctionBody consists of the text [native code].

The format of the representation generated by JScript 5.x is most appropriately described
as having the syntax of a standard ECMAScript, Third Edition FunctionExpression rather

than a FunctionDeclaration. This is because in the case of anonymous functions created
via a FunctionExpression that does not include the optional Identifier) the generated
syntax does not include the optional Identifier and hence does not conform to the base
standard‘s definition of FunctionExpression.

2.1.65 [ECMA-262] Section 15.3.4.3, Function.prototype.apply (thisArg, argArray)

V0133:

The apply method takes two arguments, thisArg and argArray, and performs a function call using the

[[Call]] property of the object. If the object does not have a [[Call]] property, a TypeError exception

is thrown.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

If no arguments are present, the global object is use as the value of thisArg.

65 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.66 [ECMA-262] Section 15.3.4.4, Function.prototype.call (thisArg [, arg1[, arg2,

…]])

V0134:

The call method takes one or more arguments, thisArg and (optionally) arg1, arg2 etc, and performs a

function call using the [[Call]] property of the object. If the object does not have a [[Call]] property, a
TypeError exception is thrown. The called function is passed arg1, arg2, etc. as the arguments.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

If no arguments are present, the global object is use as the value of thisArg.

The length property of the call method is 1.

2.1.67 [ECMA-262] Section 15.3.5.2, prototype

V0135:

The value of the prototype property is used to initialise the internal [[Prototype]] property of a newly

created object before the Function object is invoked as a constructor for that newly created object. This
property has the attribute { DontDelete DontEnum}.

2.1.68 [ECMA-262] Section 15.4.2.1, new Array ([item0 [, item1 [, …]]])

V0136:

The 0 property of the newly constructed object is set to item0 (if supplied); the 1 property of the newly

constructed object is set to item1 (if supplied); and, in general, for as many arguments as there are, the
k property of the newly constructed object is set to argument k, where the first argument is considered
to be argument number 0. If the value of an argument item is undefined, an own property of the newly

constructed object corresponding to that argument is not created.

2.1.69 [ECMA-262] Section 15.4.4.3, Array.prototype.toLocaleString ()

V0137:

The elements of the array are converted to strings using their toLocaleString methods, and these

strings are then concatenated, separated by occurrences of a separator string that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous
to the result of toString, except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Let separator be the list-separator string appropriate for the host

environment‘s current locale (this is derived in an implementation-

defined way).

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.
6. Call the [[Get]] method of this object with argument "0".

a. If Type(Result(6)) is VarDate, let R be "[object Object]" and then

go to step 9.

66 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

7. If Result(6) is undefined or null, use the empty string; otherwise, call

ToObject(Result(6)).toLocaleString(). If the recursive call to

toLocaleString would cause a non-terminating recursion use the

empty string as the result of this step.

8. Let R be Result(7).
9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

a. If Type(Result(12)) is VarDate, use "[object Object]" as Result(13)

and then go to step 14.

13. If Result(12) is undefined or null, use the empty string; otherwise,

call ToObject(Result(12)).toLocaleString(). If the recursive call to
toLocaleString would cause a non-terminating recursion use the

empty string as the result of this step.

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.
16. Go to step 10.

The toLocaleString function is not generic; it throws a TypeError

exception if its this value is not an Array object. Therefore, it cannot be

transferred to other kinds of objects for use as a method.

JScript 5.x determines the separator in step 3 by using the Windows

GetLocaleInfo system function and requesting the LOCALE_SLIST value for the
current user locale.

2.1.70 [ECMA-262] Section 15.4.4.4, Array.prototype.concat ([item1 [, item2 [, …

]]])

When the concat method is called with zero or more arguments item1,

item2, etc., it returns an array containing the array elements of the object

followed by the array elements of each argument in order.

The following steps are taken:

1. Let A be a new array created as if by the expression new Array().

2. Let n be 0.

a. Let biasN=0.

3. Let E be this object.

4. If E is not an Array object, go to step 16.

5. Let k be 0.

a. Let biasK=0.
6. Call the [[Get]] method of E with argument "length".

7. If k equals Result(6) go to step 19.

8. Call ToString(kbiasK).

9. If E has a property named by Result(8), go to step 10, but if E has no

property named by Result(8), go to step 13.

10. Call ToString(nbiasN).

11. Call the [[Get]] method of E with argument Result(8).

12. Call the [[Put]] method of A with arguments Result(10) and Result(11).

13. Increase n by 1.

67 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

a. If n> 2147483647, then let biasN= 4294967296; else let biasN=0.

14. Increase k by 1.

a. If k> 2147483647, then let biasK= 4294967296; else let biasK=0.

15. Go to step 7.

16. Call ToString(nbiasN).

17. Call the [[Put]] method of A with arguments Result(16) and E.

18. Increase n by 1.

a. If n> 2147483647, then let biasN= 4294967296; else let biasN=0.

19. Get the next argument in the argument list; if there are no more

arguments, go to step 22.

20. Let E be Result(19).

21. Go to step 4.
22. Call the [[Put]] method of A with arguments "length" and n.

23. Return A.

The length property of the concat method is 1.

As specified above in step 3, JScript 5.x uses the passed this value without

applying a ToObject coercion to it. If this method is called using the JScript 5.x
implementations of the Function.prototype.call or Function.prototype.apply

methods and passing either null or undefined as the this argument, the global
object is not used as the this value. If a Number, String, or Boolean value is
passed as the this argument the passed value rather than a corresponding
wrapper object is used as the this value.

V0138:

NOTE

The concat function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat

function can be applied successfully to a host object is implementation-dependent.

In JScript 5.x the concat function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behaviour differs from the base specification and from the probable user
intent the use of this function on objects containing such properties should be avoided.

2.1.71 [ECMA-262] Section 15.4.4.5, Array.prototype.join (separator)

V0139:

The elements of the array are converted to strings, and these strings are then concatenated, separated
by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

In JScript 5.7, if the value undefined is explicitly provided as the separator
argument, the string "undefined" is used as the separator.

The join method takes one argument, separator, and performs the following

steps:

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

68 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

a. If JScript 5.7 and the separator argument is not present, let separator

be the single character ",".

b. If JScript 5.7, go to step 4.

3. If separator is undefined, let separator be the single-character string
",".

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.

6. Call the [[Get]] method of O this object with argument "0".

7. If Result(6) is undefined or null, use the empty string; otherwise, call

ToString(Result(6)). If the call to ToString would cause a non-terminating

recursion use the empty string as the result of this step.

8. Let R be Result(7).
9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of O this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call

ToString(Result(12)). If the call to ToString would cause a non-

terminating recursion use the empty string as the result of this step.

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.
16. Go to step 10.

The length property of the join method is 1.

V0140:

NOTE

The join function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the join function

can be applied successfully to a host object is implementation-dependent. JScript 5.x does not allow the

join function to be applied to a host object.

2.1.72 [ECMA-262] Section 15.4.4.6, Array.prototype.pop ()

V0141:

The last element of the array is removed from the array and returned.

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.
1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

a.If Result(2)> 2147483648, goto step 11.

3. If Result(2) is not zero, go to step 6.

4. Call the [[Put]] method of O this object with arguments "length" and

Result(2).

5. Return undefined.

69 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

6. Call ToString(Result(2)–1).

7. Call the [[Get]] method of O this object with argument Result(6).

8. Call the [[Delete]] method of O this object with argument Result(6).
9. Call the [[Put]] method of O this object with arguments "length" and

(Result(2)–1).

10. Return Result(7).
11. Call the [[Put]] method of O this object with arguments "length" and

(Result(2)–1).
12. Return undefined.

JScript 5.x does not conform to the base specification in situations where ToUint32
applied to the value of the array‘s length property is greater than 2147483648

(which is 231). In such situations, the value of the length property is adjusted but

an element is not removed from the array and the value undefined is return.

V0142:

NOTE

The pop function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the pop function

can be applied successfully to a host object is implementation-dependent. JScript 5.x does not allow the
pop function to be applied to a host object.

2.1.73 [ECMA-262] Section 15.4.4.7, Array.prototype.push ([item1 [, item2 [, …]]])

V0143:

The arguments are appended to the end of the array, in the order in which they appear. The new length
of the array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps are

taken:

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

b. If JScript 5.7 and if false is the result of calling the
[[HasProperty]] method of O with name "length", return

undefined.
1. Call the [[Get]] method of O this object with argument "length".

2. Let n be the result of calling ToUint32(Result(1)).

3. Get the next argument in the argument list; if there are no more

arguments, go to step 7.

a. If n<2147483648 then let indx be n; else let indx be n-4294967296.

4. Call the [[Put]] method of O this object with arguments ToString(indx

n) and Result(3).

5. Increase n by 1.

6. Go to step 3.

7. Call the [[Put]] method of O this object with arguments "length" and

n.

8. Return n. If n<2147483648 return n; else return n-4294967296.

70 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x does not conform to the base specification in situations where the initial
value of the array‘s length property after conversion using ToUint32 is greater

than 2147483647 (which is 231-1) or where the push method‘s base specification
operation would cause the array‘s length to exceed that value. In such situations,
any array elements that would have been created with indices greater than
2147483647 are instead created with properties names that are the string

representation of the negative integer that is the 32-bit 2‘s complement
interpretation of 32-bit encoding of the index value. The length property is
adjusted normally in conformance to the base specification; however, if the final
length value is greater than 2147483647, the return value is the negative integer
that is the 32-bit 2‘s complement interpretation of 32-bit encoding of the final
length value.

2.1.74 [ECMA-262] Section 15.4.4.8, Array.prototype.reverse ()

V0144:

The elements of the array are arranged so as to reverse their order. The object is returned as the result

of the call.

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute floor(Result(2)/2).

4. Let k be 0.

5. If k equals Result(3), return O this object.

6. Compute Result(2)-k-1.

a. If k> 2147483647, then let biasLower= 4294967296; else let

biasLower=0.

b. If Result(6) > 2147483647, then let biasUpper= 4294967296; else

let biasUpper=0.

7. Call ToString(k-biasLower).

8. Call ToString(Result(6) -biasUpper).

9. Call the [[Get]] method of O this object with argument Result(7).

10. Call the [[Get]] method of O this object with argument Result(8).

11. If this object does not have a property named by Result(8), go to step

19.

12. If this object does not have a property named by Result(7), go to step

16.

13. Call the [[Put]] method of O this object with arguments Result(7)

and Result(10).

71 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

14. Call the [[Put]] method of O this object with arguments Result(8)

and Result(9).

15. .Go to step 25.

16. Call the [[Put]] method of O this object with arguments Result(7)

and Result(10).

17. Call the [[Delete]] method on O this object, providing Result(8) as

the name of the property to delete.

18. Go to step 25.

19. If this object does not have a property named by Result(7), go to step

23.

20. Call the [[Delete]] method on O this object, providing Result(7) as

the name of the property to delete.

21. Call the [[Put]] method of O this object with arguments Result(8)

and Result(9).

22. Go to step 25.

23. Call the [[Delete]] method on O this object, providing Result(7) as

the name of the property to delete.

24. Call the [[Delete]] method on O this object, providing Result(8) as

the name of the property to delete.

25. Increase k by 1.

26. Go to step 5.

V0145:

NOTE

The reverse function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse

function can be applied successfully to a host object is implementation-dependent. JScript 5.x does not
allow the reverse function to be applied to a host object.

In JScript 5.x the reverse function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property
names. As this behaviour differs from the base specification and from the probable user

intent the use of this function on objects containing such properties should be avoided.

2.1.75 [ECMA-262] Section 15.4.4.9, Array.prototype.shift ()

V0146:

The first element of the array is removed from the array and returned.

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

72 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

b. If JScript 5.7 and if false is the result of calling the

[[HasProperty]] method of O with name "length", return

undefined.
1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. If Result(2) is not zero, go to step 6.
4. Call the [[Put]] method of O this object with arguments "length" and

Result(2).

5. Return undefined.

6. Call the [[Get]] method of O this object with argument 0.

7. Let k be 1.

8. If k equals Result(2), go to step 18.

a. If k> 2147483647, then let biasSrc= 4294967296; else let

biasSrc=0.

b. If k –1 > 2147483647, then let biasDst= 4294967296; else let

biasDst=0.

9. Call ToString(k–biasSrc).

10. Call ToString(k–1–biasDst).

11. If O this object has a property named by Result(9), go to step 12; but if

O this object has no property named by Result(9), then go to step 15.

12. Call the [[Get]] method of O this object with argument Result(9).

13. Call the [[Put]] method of O this object with arguments Result(10) and

Result(12).

14. Go to step 16.

15. Call the [[Delete]] method of O this object with argument Result(10).

16. Increase k by 1.

17. Go to step 8.

18. If JScript 5.8 call the [[Delete]] method of O this object with argument

ToString(Result(2)–1).

19. Call the [[Put]] method of O this object with arguments "length" and

(Result(2)–1).

20. Return Result(6).

V0147:

NOTE

The shift function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the shift function

can be applied successfully to a host object is implementation-dependent. JScript 5.x does not allow the
shift function to be applied to a host object.

In JScript 5.x the shift function handles array index property names with numeric values

greater than 231-1 differently from numerically smaller array index property names. As

this behavior differs from the base specification and from probable user intent, the use of
this function on objects containing such properties should be avoided.

2.1.76 [ECMA-262] Section 15.4.4.10, Array.prototype.slice (start, end)

V0148:

73 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The slice method takes two arguments, start and end, and returns an array containing the elements of

the array from element start up to, but not including, element end (or through the end of the array if end
is not present undefined). If start is negative, it is treated as (length+start) where length is the length

of the array. If end is negative, it is treated as (length+end) where length is the length of the array. The
following steps are taken:

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.
1. Let A be a new array created as if by the expression new Array().

2. Call the [[Get]] method of O this object with argument "length".

3. Call ToUint32(Result(2)).

a. If end is not present, set end to Result(3)

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use

min(Result(4),Result(3)).

6. Let k be Result(5).

7. If end is undefined, use 0 Result(3); else use ToInteger(end).

8. If Result(7) is negative, use max((Result(3)+Result(7)),0); else use

min(Result(7),Result(3)).

9. Let n be 0.

10. If k is greater than or equal to Result(8), go to step 19.

a. If k> 2147483647, then let biasSrc= 4294967296; else let

biasSrc=0.

b. If n> 2147483647, then let biasDst= 4294967296; else let

biasDst=0.

11. Call ToString(k–biasSrc).

12. If O this object has a property named by Result(11), go to step 13; but if

O this object has no property named by Result(11), then go to step 16.

13. Call ToString(n–biasSrc).

14. Call the [[Get]] method of O this object with argument Result(11).

15. Call the [[Put]] method of A with arguments Result(13) and Result(14).

16. Increase k by 1.

17. Increase n by 1.

18. Go to step 10.

19. Call the [[Put]] method of A with arguments "length" and n.

20. Return A.

The length property of the slice method is 2.

V0149:

NOTE

The slice function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the slice function

can be applied successfully to a host object is implementation-dependent. JScript 5.x does not allow the
slice function to be applied to a host object.

In JScript 5.x the slice function handles array index property names with numeric values

greater than 231-1 differently from numerically smaller array index property names. As

74 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

this behaviour differs from the base specification and from probable user intent, the use
of this function on objects containing such properties should be avoided.

2.1.77 [ECMA-262] Section 15.4.4.11, Array.prototype.sort (comparefn)

V0150:

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare
equal do not necessarily remain in their original order). If comparefn is present not undefined, it should
be a function that accepts two arguments x and y and returns a negative value if x < y, zero if x = y, or
a positive value if x > y.

If comparefn is present not undefined and is not a consistent comparison function for the elements of
this array (see below), the behaviour of sort is implementation-defined. Let len be

ToUint32(this.length). If there exist integers i and j and an object P such that all of the conditions

below are satisfied then the behaviour of sort is implementation-defined:

 0  i < len

 0  j < len

 this does not have a property with name ToString(i)

 P is obtained by following one or more [[Prototype]] properties starting at this

P has a property with name ToString(j)

V0151:

Otherwise the following steps are taken.

0. Let obj be the result of calling ToObject with the this value as the

argument.

a. If obj is a host object, throw a TypeError exception.

b. If false is the result of calling the [[HasProperty]] method of obj
with name "length", return obj.

1. Call the [[Get]] method of obj this object with argument "length".

2. Call ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]] ,

[[Put]], and [[Delete]] methods of obj this object and to SortCompare

(described below), where the first argument for each call to [[Get]],

[[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and

where the arguments for calls to SortCompare are results of previous

calls to the [[Get]] method.

4. Return obj this object.

V0152:

The returned object must have the following two properties.

 There must be some mathematical permutation  of the nonnegative integers less than Result(2),
such that for every nonnegative integer j less than Result(2), if property old[j] existed, then

new[(j)] is exactly the same value as old[j], but if property old[j] did not exist, then

new[(j)] does not exist.

75 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

 Then for all nonnegative integers j and k, each less than Result(2), if SortCompare(j,k) < 0 (see
SortCompare below), then (j) < (k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] method of obj

this object with argument j before this function is executed, and the notation new[j] to refer to the

hypothetical result of calling the [[Get]] method of obj this object with argument j after this function has
been executed.

V0153:

When the SortCompare operator is called with two arguments j and k, the following steps are taken:

1. Call ToString(j).

2. Call ToString(k).

3. If obj this object does not have a property named by Result(1), and obj

this object does not have a property named by Result(2), return +0.

4. If obj this object does not have a property named by Result(1), return 1.

5. If obj this object does not have a property named by Result(2), return –

1.

6. Call the [[Get]] method of obj this object with argument Result(1).

7. Call the [[Get]] method of obj this object with argument Result(2).

8. Let x be Result(6).

9. Let y be Result(7).

10. If x and y are both undefined, return +0.

11. If x is undefined, return 1.

12. If y is undefined, return 1.

a. If the argument comparefn is not present or the value null, go to step

16.

13. If the argument comparefn is not a function undefined, throw a

TypeError exception go to step

14. Call comparefn with arguments x and y.

a. If Result(14) is a Number, return Result(14).

b. Call ToPrimitive with argument Result(14) and hint Number.

c. If Result(14.a) is undefined, throw a TypeError exception.

d. Call ToNumber with argument Result(14.a).

e. If Result(14.d) is NaN, throw a TypeError exception.

15. Return Result(14.d).

16. Call ToString(x).

17. Call ToString(y).

18. If Result(16) < Result(17), return 1.

19. If Result(16) > Result(17), return 1.
20. Return +0.

V0154:

NOTE 2

The sort function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the sort function

can be applied successfully to a host object is implementation-dependent. JScript 5.x does not allow the
sort function to be applied to a host object.

76 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.78 [ECMA-262] Section 15.4.4.12, Array.prototype.splice (start, deleteCount [,

item1 [, item2 [, ...]]])

V0155:

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1,

item2, etc., the deleteCount elements of the array starting at array index start are replaced by the
arguments item1, item2, etc. The following steps are taken:

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

b. If JScript 5.7 and if false is the result of calling the

[[HasProperty]] method of O with name "length", return

undefined.

1. Let A be a new array created as if by the expression new Array().

2. Call the [[Get]] method of O this object with argument "length".

3. Call ToUint32(Result(2)).

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use

min(Result(4),Result(3)).

6. Compute min(max(ToInteger(deleteCount),0),Result(3)–Result(5)).

7. Let k be 0.

8. If k equals Result(6), go to step 16.

a. If Result(5)+k> 2147483647, then let biasSrc= 4294967296; else let

biasSrc=0.

b. If k> 2147483647, then let biasK= 4294967296; else let biasK=0.

9. Call ToString(Result(5)+k–biasSrc).

10. If O this object has a property named by Result(9), go to step 11; but if

O this object has no property named by Result(9), then go to step 14.

11. Call ToString(k–biasK).

12. Call the [[Get]] method of O this object with argument Result(9).

13. Call the [[Put]] method of A with arguments Result(11) and Result(12).

14. Increment k by 1.

15. Go to step 8.
16. Call the [[Put]] method of A with arguments "length" and Result(6).

17. Compute the number of additional arguments item1, item2, etc.

18. If Result(17) is equal to Result(6), go to step 48.

19. If Result(17) is greater than Result(6), go to step 37.

20. Let k be Result(5).

21. If k is equal to (Result(3)–Result(6)), go to step 31.

a. If k+Result(6)> 2147483647, then let biasSrc= 4294967296; else let

biasSrc=0.

b. If k+Result(17) > 2147483647, then let biasDst= 4294967296; else

let biasDst=0.

22. Call ToString(k+Result(6) –biasSrc).

23. Call ToString(k+Result(17) –biasDst).

24. If O this object has a property named by Result(22), go to step 25; but if

O this object has no property named by Result(22), then go to step 28.

25. Call the [[Get]] method of O this object with argument Result(22).

77 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

26. Call the [[Put]] method of O this object with arguments Result(23) and

Result(25).

27. Go to step 29.

28. Call the [[Delete]] method of O this object with argument Result(23).

29. Increase k by 1.

30. Go to step 21.

31. Let k be Result(3).

32. If k is equal to (Result(3)–Result(6)+Result(17)), go to step 48.

33. Call ToString(k–1).

34. Call the [[Delete]] method of this object with argument Result(33).

35. Decrease k by 1.

36. Go to step 32.

37. Let k be (Result(3)–Result(6)).

38. If k is equal to Result(5), go to step 48.

a. If k+Result(6) –1> 2147483647, then let biasSrc= 4294967296; else

let biasSrc=0.

b. If k+Result(17) –1 > 2147483647, then let biasDst= 4294967296;

else let biasDst=0.

39. Call ToString(k+Result(6)–1–biasSrc).

40. Call ToString(k+Result(17)–1–biasDst)

41. If O this object has a property named by Result(39), go to step 42; but if

O this object has no property named by Result(39), then go to step 45.

42. Call the [[Get]] method of O this object with argument Result(39).

43. Call the [[Put]] method of O this object with arguments Result(40) and

Result(42).

44. Go to step 46.

45. Call the [[Delete]] method of O this object with argument Result(40).

46. Decrease k by 1.

47. Go to step 38.

48. Let k be Result(5).

49. Get the next argument in the part of the argument list that starts with

item1; if there are no more arguments, go to step 52.a 53.

a. If k> 2147483647, then let biasK= 4294967296; else let biasK=0.

50. Call the [[Put]] method of O this object with arguments ToString(k–

biasK) and Result(49).

51. Increase k by 1.

52. Go to step 49.

a. If Result(6)≠Result(17), then go to step 54.

53. Call the [[Put]] method of O this object with arguments "length" and

(Result(3)–Result(6)+Result(17)).

54. Return A.

The length property of the splice method is 2.

V0156:

NOTE

The splice function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice

function can be applied successfully to a host object is implementation-dependent. JScript 5.x does not
allow the splice function to be applied to a host object.

78 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

In JScript 5.x the splice function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behaviour differs from the base specification and from probable user
intent, the use of this function on objects containing such properties should be avoided.

2.1.79 [ECMA-262] Section 15.4.4.13, Array.prototype.unshift ([item1 [, item2 [, ...

]]])

V0157:

The arguments are prepended to the start of the array, such that their order within the array is the same
as the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following steps

are taken:

0. Let O be the result of calling ToObject with the this value as the

argument.

a. If O is a host object, throw a TypeError exception.

b. If JScript 5.7 and if false is the result of calling the

[[HasProperty]] method of O with name "length", return

undefined.
1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute the number of arguments.

4. Let k be Result(2).

5. If k is zero, go to step 15.

a. If k–1> 2147483647, then let biasSrc= 4294967296; else let

biasSrc=0.

b. If k+Result(3) –1 > 2147483647, then let biasDst= 4294967296;

else let biasDst=0.

6. Call ToString(k–1–biasSrc).

7. Call ToString(k+Result(3)–1–biasDest).

8. If O this object has a property named by Result(6), go to step 9; but if O

this object has no property named by Result(6), then go to step 12.

9. Call the [[Get]] method of O this object with argument Result(6).

10. Call the [[Put]] method of O this object with arguments Result(7) and

Result(9).

11. Go to step 13.

12. Call the [[Delete]] method of O this object with argument Result(7).

13. Decrease k by 1.

14. Go to step 5.

15. Let k be 0.

16. Get the next argument in the part of the argument list that starts with

item1; if there are no more arguments, go to step 20.a 21.

17. Call ToString(k).

18. Call the [[Put]] method of O this object with arguments Result(17) and

Result(16).

19. Increase k by 1.

20. Go to step 16.

a. If Result(3) is zero, then go to step 21.a.

79 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

21. Call the [[Put]] method of O this object with arguments "length" and

(Result(2)+Result(3)).

a.If JScript 5.7, return undefined.
22. Return (Result(2)+Result(3)).

The length property of the unshift method is 1.

V0158:

NOTE

The unshift function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift

function can be applied successfully to a host object is implementation-dependent. JScript 5.x does not
allow the unshift function to be applied to a host object.

In JScript 5.x the unshift function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behaviour differs from the base specification and from probable user
intent, the use of this function on objects containing such properties should be avoided.

2.1.80 [ECMA-262] Section 15.4.5.1, [[Put]] (P, V)

V0159:

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects ([ECMA-

262] section 8.6.2.2).

Assume A is an Array object and P is a string.

When the [[Put]] method of A is called with property P and value V, the following steps are taken:

0. If JScript 5.7 and P is "length", go to step 12.

1. Call the [[CanPut]] method of A with name P.

2. If Result(1) is false, return.

3. If A doesn‘t have a property with name P, go to step 7.

4. If P is "length", go to step 12.

5. Set the value of property P of A to V.

6. Go to step 8.

7. Create a property with name P, set its value to V and give it empty

attributes.

8. If P is not an array index and not '4294967295', return.

a.If P is '4294967295', go to step 17.

9. If ToUint32(P) is less than the value of the length property of A, then

return.
10. Change (or set) the value of the length property of A to ToUint32(P)+1.

11. Return.

12. Compute ToUint32(V).

a.If 0 ≤ ToNumber(V) < 4294967296, go to step 14.

13. If Result(12) is not equal to ToNumber(V), throw a RangeError

exception.

80 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

14. For every integer k that is less than the value of the length property of A

but not less than Result(12), if A itself has a property (not an inherited

property) named ToString(k), then delete that property.

15. Set the value of property P of A to Result(12).

16. Return.
17. For every integer k that is less than the value of the length property of A

but not less than 0, if A itself has a property (not an inherited property)

named ToString(k), then delete that property.
18. Change (or set) the value of the length property of A to 0.

19. Return.

V0160:

JScript 5.x does not throw a RangeError if an attempt is made to set the length

property of an array object to a positive, non-integer value less than 232. If the property
named '4294967295' of an array object is set, the length property of the array is set to

0 and any existing array index named properties are deleted if their names are array
indices smaller than the former value of the length property.

2.1.81 [ECMA-262] Section 15.4.5.2, length

V0161:

The length property of this Array object is always numerically greater than the name of every property

whose name is an array index.

The length property has the attributes { DontEnum, DontDelete }. However, for JScript 5.7 the length

property in addition has the ReadOnly attribute.

The existence of the ReadOnly attribute for JScript 5.7 does not prevent modification of

the value of the length property of array instances because the [[Put]] method for array
objects as defined in 15.4.5.1 does not call [[CanPut]] for the length property.
However, the existence of the ReadOnly attribute does affect the result of the

[[CanPut]] method in any situations where it is actually called. In particular, any object
that inherits its length property from an array instance has a ReadOnly length property.

2.1.82 [ECMA-262] Section 15.5.3.2, String.fromCharCode ([char0 [, char1 [, …]]])

V0162:

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character, and
so on, from left to right. An argument is converted to a character by applying the operation ToUint16

([ECMA-262] section 9.7) and regarding the resulting 16-bit integer as the code point value of a

character. If no arguments are supplied, the result is the empty string.

The length property of the fromCharCode function is 1 0.

2.1.83 [ECMA-262] Section 15.5.4, Properties of the String Prototype Object

V0163:

The String prototype object is itself a String object (its [[Class]] is "String") whose value is an empty

string. For JScript 5.x, the [[Class]] of the String prototyupe object is "Object".

81 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype

object ([ECMA-262] section 15.2.3.1).

2.1.84 [ECMA-262] Section 15.5.4.3, String.prototype.valueOf ()

V0164:

Returns this string value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String or a

String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

2.1.85 [ECMA-262] Section 15.5.4.7, String.prototype.indexOf (searchString, position)

V0165:

The length property of the indexOf method is 1 2.

2.1.86 [ECMA-262] Section 15.5.4.8, String.prototype.lastIndexOf (searchString,

position)

V0166:

The length property of the lastIndexOf method is 1 2.

2.1.87 [ECMA-262] Section 15.5.4.9, String.prototype.localeCompare (that)

V0167:

The actual return values are left implementation-defined to permit implementers to encode additional

information in the result value, but the function is required to define a total ordering on all strings and to
return 0 when comparing two strings that are considered canonically equivalent by the Unicode standard.

For JScript 5.x running on Windows, the returned value is determined as follows:

1. Call ToString passing the this object as the argument.

2. Call ToString passing that as the argument.

3. Call the Windows CompareString system function passing Result(1), Result(2)

and the current locale information as arguments. The value 0 is passed as the

dwCmpFlags argument.

4. Return Result(3).

2.1.88 [ECMA-262] Section 15.5.4.10, String.prototype.match (regexp)

V0168:

Let string denote the result of converting the this value to a string using ToString.

If regexp is not present, return null.

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a string.

Then do one of the following:

82 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

 If regexp.global is false: Return the result obtained by invoking RegExp.prototype.exec (see

[ECMA-262] section 15.10.6.2) on regexp with string as parameter.

 If regexp.global is true: Set the regexp.lastIndex property to 0 and invoke

RegExp.prototype.exec repeatedly until there is no match. If there is a match with an empty

string (in other words, if the value of regexp.lastIndex is left unchanged), increment

regexp.lastIndex by 1. Let n be the number of matches. If n=0, then the value returned is null;

otherwise the The value returned is an array with the length property set to n and properties 0

through n–1 corresponding to the first elements of the results of all matching invocations of
RegExp.prototype.exec.

The above change corrects a specification error that is documented in the ES3 errata.

JScript 5.x implements the correction.

Because the above function is defined to use the RegExp object and its methods, the

output of this function is subject to all of the variances from the base specification that

are specified in [ECMA-262] section 15.10 and its subsections.

2.1.89 [ECMA-262] Section 15.5.4.11, String.prototype.replace (searchValue,

replaceValue)

V0169:

Let string denote the result of converting the this value to a string using ToString.

If replaceValue is a not function, let newstring denote the result of converting replaceValue to a string
using ToString.

JScript 5.x converts replaceValue to a string prior to converting searchValue to a string.

V0170:

Otherwise, let newstring denote the result of converting replaceValue to a string. The result is a string

value derived from the original input string by replacing each matched substring with a string derived
from newstring by replacing characters in newstring by replacement text as specified in the following
table. These $ replacements are done left-to-right, and, once such a replacement is performed, the new

replacement text is not subject to further replacements. For example, "$1,$2".replace(/(\$(\d))/g,

"$$1-$1$2") returns "$1-$11,$1-$22". A $ in newstring that does not match any of the forms below is

left as is.

For JScript 5.x length property of the replace method is 1 rather than 2.

2.1.90 [ECMA-262] Section 15.5.4.12, String.prototype.search (regexp)

V0171:

Let string denote the result of converting the this value to a string using ToString.

If regexp is not present, return null.

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a string.

83 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The value string is searched from its beginning for an occurrence of the regular expression pattern
regexp. The result is a number indicating the offset within the string where the pattern matched, or –1 if
there was no match.

For JScript 5.x length property of the search method is 0 rather than 1.

2.1.91 [ECMA-262] Section 15.5.4.13, String.prototype.slice (start, end)

V0172:

The length property of the slice method is 2 0.

2.1.92 [ECMA-262] Section 15.5.4.14, String.prototype.split (separator, limit)

V0173:

If separator is a regular expression that contains capturing parentheses, then each time separator is
matched the results (including excluding any undefined empty string results) of the capturing
parentheses are spliced into the output array. (For example

"Aboldand<CODE>coded</CODE>".split(/<(\/)?([^<>]+)>/) evaluates to the array ["A",
undefined, "B", "bold", "/", "B", "and", undefined, "CODE", "coded", "/", "CODE", ""].)

JScript 5.x does not include empty string capturing parentheses result values in the

output array. Note that such results would be undefined result values according to the

base specification however, as specified in [ECMA-262] section 15.10 and its

subsections. JScript produces empty string values for unmatched capturing parentheses.

V0174:

When the split method is called, the following steps are taken:

1. Let S = ToString(this).

Let A be a new array created as if by the expression new Array().

If limit is undefined or null, let lim = 232–1 and go to step 4.; else let lim

= ToUint32(limit)

a. Let lim = ToInteger(limit) however if an exception is thrown while

performing ToInteger ignore the exception and let lim = 0.

b. If lim is NaN, let lim = 0 and go to step 4.

c. If lim is negative, let lim = 232–1 and go to step 4.

d. Let lim be the smaller of lim and 232–1.

Let s be the number of characters in S.

Let p = 0.
If separator is a RegExp object (its [[Class]] is "RegExp"), let R =

separator; otherwise let R = ToString(separator).

If lim = 0, return A.

If separator is undefined, go to step 33.

If s = 0, go to step 31.

Let q = p.

If q = s, go to step 28.

Call SplitMatch(R, S, q) and let z be its MatchResult result.

If z is failure, go to step 26.

z must be a State. Let e be z's endIndex and let cap be z's captures array.

If e = p, go to step 26.

84 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Let T be a string value equal to the substring of S consisting of the

characters at positions p (inclusive) through q (exclusive).

e. If T is the empty string, then go to step 19.

Call the [[Put]] method of A with arguments A.length and T.

If A.length = lim, return A.

Let p = e.

Let i = 0.

If i is equal to the number of elements in cap, go to step 10.

Let i = i+1.

f. If cap[i] is the empty string or undefined, go to step 21.

Call the [[Put]] method of A with arguments A.length and cap[i].

If A.length = lim, return A.

Go to step 21.

Let q = q+1.

Go to step 11.

Let T be a string value equal to the substring of S consisting of the

characters at positions p (inclusive) through s (exclusive).

Call the [[Put]] method of A with arguments A.length and T.

Return A.

Call SplitMatch(R, S, 0) and let z be its MatchResult result.

If z is not failure, return A.
Call the [[Put]] method of A with arguments "0" and S.

Return A.

2.1.93 [ECMA-262] Section 15.5.4.17, String.prototype.toLocaleLowerCase ()

V0175:

This function works exactly the same as toLowerCase except that its result is intended to yield the

correct result for the host environment‘s current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with

the regular Unicode case mappings.

For JScript 5.x running on Windows, the returned string is determined as follows:

1. Call ToString passing the this object as the argument.

2. Call the Windows LCMapString system function passing Result(1) and the current

locale information. The value LC_MAP_LOWERCASE is passed as the map flags

argument.

3. Return Result(2).

2.1.94 [ECMA-262] Section 15.5.4.19, String.prototype.toLocaleUpperCase ()

V0176:

This function works exactly the same as toUpperCase except that its result is intended to yield the

correct result for the host environment‘s current locale, rather than a locale-independent result. There

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with
the regular Unicode case mappings.

For JScript 5.x running on Windows, the returned string is determined as follows:

85 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. Call ToString passing the this object as the argument.

2. Call the Windows LCMapString system function passing Result(1) and the current

locale information. The value LC_MAP_UPPERCASE is passed as the map flags

argument.

3. Return Result(2).

2.1.95 [ECMA-262] Section 15.7.4, Properties of the Number Prototype Object

V0177:

In the following descriptions of functions that are properties of the Number prototype object, the phrase

―this Number object‖ refers to the object that is the this value for the invocation of the function, if the
this value is an object; a TypeError exception is thrown if the this value is neither a number nor not an
object for which the value of the internal [[Class]] property is "Number". Also, the phrase ―this number

value‖ refers to the number that is the this value or the number value represented by this Number
object, that is, the value of the internal [[Value]] property of this Number object.

2.1.96 [ECMA-262] Section 15.7.4.2, Number.prototype.toString (radix)

V0178:

1. If radix is null or undefined, throw a TypeError exception.

2. Let radNumber be the result of calling ToNumber with radix as the argument.

3. If radNumber is NaN, throw a TypeError exception.

4. Let radInteger be the result of calling ToInteger with radNumber as the argument.

5. If radix is not present or radInteger is the number 10 or undefined, then this number value is given
as an argument to the ToString operator; the resulting string value is returned.

6. If radInteger radix is an integer from 2 to 36, but not 10, the result is a string, the choice of which is

implementation-dependent.

For JScript 5.x the result string consists of a representation of this number value

expressed using the radix that is the value of radInteger. Letters a-z are used for digits
with values 10 through 35. The algorithm used to generate the string representation is

the algorithm specified in [ECMA-262] section 9.8.1 generalized for radices other than

10.

7. Otherwise throw a TypeError exception.

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or

a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

2.1.97 [ECMA-262] Section 15.7.4.3, Number.prototype.toLocaleString ()

V0179:

Produces a string value that represents the value of the Number formatted according to the conventions
of the host environment‘s current locale. This function is implementation-dependent, and it is
permissible, but not encouraged, for it to return the same thing as toString.

For JScript 5.x running on Windows, the string is determined as follows:

86 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. If this number value is an integer, return the result of calling ToString with this

number value as the argument.

2. If this number value is NaN, then return the string value "NaN"

3. If this number value is +Infinity or -Infinity, then return the statically localized
string that describes such a value.

4. Create a string value using the algorithm of Number.prototype.toFixed with this
number value as the this value and the actual number of significant decimal digits
of this number value as the argument.

5. Call the Windows GetNumberFormat system function passing Result(4) and the

current locale information. The values 0 and NULL are passed as the format flags
and the lpFormat arguments.

6. If the call in step 5 succeeded, then return Result(5).

7. If the calls in either step 3 or step 5 failed, then return the result of calling the

standard built-in Date.prototype.toString with Result(1) as its this object.

8. Call the Windows OLE Automation function VariantChangeType passing Result(4)

and the current locale information.

9. Return the string value corresponding to Result(11).

2.1.98 [ECMA-262] Section 15.7.4.4, Number.prototype.valueOf ()

V0180:

Returns this number value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Number or

a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

2.1.99 [ECMA-262] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits)

V0181:

Return a string containing the number represented in fixed-point notation with fractionDigits digits after
the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the following steps:

1. Let f be ToInteger(fractionDigits). (If fractionDigits is undefined, this
step produces the value 0).

a. If f is +, or , then let f be 0.

2. If f < 0 or f > 20, throw a RangeError exception.

3. Let x be this number value.
4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

6. If x  0, go to step 9.

7. Let s be "-".

8. Let x = –x.

9. If x  1021, let m = ToString(x) and go to step 20.

a. Let scaledX be x*10f.

b. If scaledX≥0.50 and scaled<0.95,l let x be 0.

10. Let n be an integer for which the exact mathematical value of n  10f – x

is as close to zero as possible. If there are two such n, pick the larger n.

87 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

11. If n = 0, let m be the string "0". Otherwise, let m be the string

consisting of the digits of the decimal representation of n (in order, with

no leading zeroes).

12. If f = 0, go to step 20.

13. Let k be the number of characters in m.

14. If k > f, go to step 18.

15. Let z be the string consisting of f+1–k occurrences of the character ‗0‘.

16. Let m be the concatenation of strings z and m.

17. Let k = f + 1.

18. Let a be the first k–f characters of m, and let b be the remaining f

characters of m.
19. Let m be the concatenation of the three strings a, ".", and b.

20. Return the concatenation of the strings s and m.

V0182:

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than

0 or greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

JScript 5.x treats as if it was the value 0 any value of fractionDigits that when converted to an integer is
equal to either +, or .

In situations where the absolute value of the number value times 10f is in the interval

[0.50,0.95), JScript 5.x produces its result as if the number value was 0.

2.1.100 [ECMA-262] Section 15.7.4.6, Number.prototype.toExponential

(fractionDigits)

V0183:

1. Let x be this number value.

2. Let f be ToInteger(fractionDigits).

a. If f is +, or , then let f be 0.

3. If x is NaN, return the string "NaN".

4. Let s be the empty string.

5. If x  0, go to step 8.

6. Let s be "-".

7. Let x = –x.
8. If x = +, let m = "Infinity" and go to step 30.

9. If fractionDigits was not passed as an argument is undefined, go to step

14.

10. If f < 0 or f > 20, throw a RangeError exception.

11. If x = 0, go to step 16.

12. Let e and n be integers such that 10f  n < 10f+1 and for which the exact

mathematical value of n  10e–f – x is as close to zero as possible. If

there are two such sets of e and n, pick the e and n for which n  10e–f is

larger.

13. Go to step 20.

14. If x  0, go to step 19.

15. Let f = 0.

16. Let m be the string consisting of f+1 occurrences of the character ‗0‘.

17. Let e = 0.

88 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

18. Go to step 21.

19. Let e, n, and f be integers such that f  0, 10f  n < 10f+1, the number

value for n  10e–f is x, and f is as small as possible. Note that the

decimal representation of n has f+1 digits, n is not divisible by 10, and

the least significant digit of n is not necessarily uniquely determined by

these criteria.

20. Let m be the string consisting of the digits of the decimal representation

of n (in order, with no leading zeroes).

21. If f = 0, go to step 24.

22. Let a be the first character of m, and let b be the remaining f characters

of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

26. Let c = "-".

27. Let e = –e.

28. Let d be the string consisting of the digits of the decimal representation

of e (in order, with no leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toExponential method is 1.

V0184:

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits

less than 0 or greater than 20. In this case toExponential would not necessarily throw RangeError for

such values. JScript 5.x treats as if it was the value 0 any value of fractionDigits that when converted to
an integer is equal to either +, or .

2.1.101 [ECMA-262] Section 15.7.4.7, Number.prototype.toPrecision (precision)

V0185:

Return a string containing the number represented either in exponential notation with one digit before
the significand's decimal point and precision–1 digits after the significand's decimal point or in fixed

notation with precision significant digits. If precision is undefined, call ToString (9.8.1) instead.

JScript 5.7 throws a RangeError exception if undefined is explicitly passed to this

function as the precision argument. If does not throw the exception if precision is
undefined because no arguments were provided by the caller.

V0186:

Specifically, perform the following steps:

1. Let x be this number value.

a. If running JScript 5.7, and the value undefined was explicitly passed

as the precision argument, throw a RangeError exception.

2. If precision is undefined, return ToString(x).

3. Let p be ToInteger(precision).

4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

89 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

6. If x ≥ 0, go to step 9.

7. Let s be "-".

8. Let x = –x.

9. If x = +∞, let m = "Infinity" and go to step 30.

10. If p < 1 or p > 21, throw a RangeError exception.

11. If x ≠ 0, go to step 15.

12. Let m be the string consisting of p occurrences of the character ‗0‘.

13. Let e = 0.

14. Go to step 18.

15. Let e and n be integers such that 10p–1 ≤ n < 10p and for which the

exact mathematical value of n × 10e–p+1 – x is as close to zero as

possible. If there are two such sets of e and n, pick the e and n for which

n × 10e–p+1 is larger.

16. Let m be the string consisting of the digits of the decimal representation

of n (in order, with no leading zeroes).

17. If e < –6 or e ≥ p, go to step 22.

18. If e = p–1, go to step 30.

19. If e ≥ 0, let m be the concatenation of the first e+1 characters of m, the

character ‗.‘, and the remaining p– (e+1) characters of m and go to step

30.

20. Let m be the concatenation of the string "0.", –(e+1) occurrences of the

character ‗0‘, and the string m.

21. Go to step 30.

22. Let a be the first character of m, and let b be the remaining p–1

characters of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

26. Let c = "-".

27. Let e = –e.

28. Let d be the string consisting of the digits of the decimal representation

of e (in order, with no leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toPrecision method is 1.

V0187:

An implementation is permitted to extend the behaviour of toPrecision for values of precision less than

1 or greater than 21. In this case toPrecision would not necessarily throw RangeError for such values.

JScript 5.x does not extend the behaviour of toPrecision for values of precision less

than 1 or greater than 21.

2.1.102 [ECMA-262] Section 15.8.2, Function Properties of the Match Object

V0188:

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by
this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic contained
in fdlibm, the freely distributable mathematical library from Sun Microsystems (fdlibm-

mailto:Fdlibm-comment@sunpro.eng.sun.com

90 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

comment@sunpro.eng.sun.com). This specification also requires specific results for certain argument

values that represent boundary cases of interest

JScript 5.x uses the implementation of these functions provided by the Windows C/C++

Run-time Libraries.

2.1.103 [ECMA-262] Section 15.9.1.8, Local Time Adjustment

V0189:

An implementation of ECMAScript is expected to determine the local time zone adjustment. The local
time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC represents
the local standard time. Daylight saving time is not reflected by LocalTZA. The value LocalTZA does not
vary with time but depends only on the geographic location.

JScript 5.x uses the available facilities of the host operating system to determine the local

time zone adjustment.

2.1.104 [ECMA-262] Section 15.9.1.9, Daylight Saving Time Adjustment

V0190:

If the host environment provides functionality for determining daylight saving time, the implementation
of ECMAScript is free to map the year in question to an equivalent year (same leap-year-ness and same
starting week day for the year) for which the host environment provides daylight saving time
information. The only restriction is that all equivalent years should produce the same result.

JScript 5.x does equivalent year mapping to determine daylight savings time

adjustments. The equivalent year that is used is determined according to the
following table:

2.1.105 [ECMA-262] Section 15.9.1.14, TimeClip (time)

V0191:

The operator TimeClip calculates a number of milliseconds from its

argument, which must be an ECMAScript number value. This operator

functions as follows:

The change in step 3 below corrects an error in the base specification.

1. If time is not finite, return NaN.

2. If abs(Result(1)) > 8.64 x 1015, return NaN.

Week day of Jan. 1: 0 1 2 3 4 5 6

Non-leap years <

2007
1995 1979 1991 1975 1987 1971 1983

Leap years < 2007 1884 1996 1980 1992 1976 1988 1972

Non-leap years ≥
2007

2023 2035 2019 2031 2015 2027 2011

Leap years ≥ 2007 2012 2024 2036 2020 2032 2016 2028

mailto:Fdlibm-comment@sunpro.eng.sun.com

91 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

3. Return an implementation-dependent choice of either ToInteger(time

Result(2)) or ToInteger(time Result(2)) + (+0).

(Adding a positive zero converts 0 to +0.)

JScript 5.x returns: ToInteger(time)

2.1.106 [ECMA-262] Section 15.9.4.2, Date.parse (string)

V0192:

If string is not present or is the value null or undefined, the parse function returns NaN. Otherwise,

the The parse function applies the ToString ToPrimitive operator to its argument and then applies

ToString to that result and interprets the resulting string as a date; it returns a number, the UTC time

value corresponding to the date. The string may be interpreted as a local time, a UTC time, or a time in
some other time zone, depending on the contents of the string.

V0193:

JScript 5.x parses the string value and produces a value in accordance with the following grammar and
rules. If the string can not be recognized starting with the production DateString according to these rules
the number value NaN is returned.

Date String Syntax

The following lexical grammar defines the tokens that make up date strings.

DateToken ::

Separator

NumericDateToken

AlphaDateToken

DateComment

OffsetFlag

Separator :: one of

, : / <SP>

DateComment ::

(DateCommentBodyopt)

DateCommentBody ::

DateCommentChars DateCommentopt

DateComment DateCommentBodyopt

DateCommentChars ::

DateCommentChar DateCommentCharsopt

92 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

DateCommentChar ::

DateChar but not (or)

OffsetFlag :: one of

+ -

AlphaDatetoken ::

AlphaDateComponent periodopt

AlphaDateComponent ::

WeekDay

Month

TimeZone

MilitaryTimeZone

AmPmFlag

AdBcFlag

period ::

.

V0194:

WeekDay ::

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Month

January

February

93 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

March

April

May

June

July

August

September

October

November

December

TimeZone ::

est

edt

cst

cdt

mst

mdt

pst

pdt

gmt

utc

MilitaryTimeZone ::

a [lookahead  { .m m d .d p u}]

p [lookahead  { .m m d s}]

b [lookahead  { .c c}]

f [lookahead  { e i}]

m [lookahead  { a d o s}]

s [lookahead  { a e u}]

o [lookahead ≠ c]

n [lookahead ≠ o]

d [lookahead ≠ e]

t [lookahead  { h u}]

w [lookahead ≠ e]

e [lookahead  { d s}]

c [lookahead  { d s}]

g [lookahead ≠ m]

u [lookahead ≠ t

UniqueMilitaryTimeZone

UniqueMilitaryTimeZone :: one of

 z y x v r q h i k l

94 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

AmPmFlag::

am

a.m

pm

p.m

AdBcFlag ::

ad

a.d

bc

b.c

V0195:

NumericDateToken ::

NumericDateComponent -

NumericDateComponent [lookahead ≠ -]

NumericDateComponent ::

DateDigit [lookahead  DateDigit]

DateDigit DateDigit [lookahead  DateDigit]

DateDigit DateDigit DateDigit [lookahead  DateDigit]

DateDigit DateDigit DateDigit DateDigit [lookahead  DateDigit]

DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead  DateDigit]

DateDigit DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead  DateDigit]

DateDigit :: one of

0 1 2 3 4 5 6 7 8 9

V0196:

Sunday ::

su

sun

sund

sunda

95 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

sunday

Monday ::

mo

mon

mond

monda

monday

Tuesday ::

tu

tue

tues

tuesd

tuesda

tuesday

Wednesday ::

we

wed

wedn

wedne

wednes

wednesd

wednesda

wednesday

Thursday ::

th

thu

thur

96 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

thurs

thursd

thursda

thursday

Friday ::

fr

fri

frid

frida

friday

Saturday ::

sa

sat

satu

satur

saturd

saturda

saturday

V0197:

January ::

ja

jan

janu

januar

january

February ::

fe

feb

97 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

febr

febru

februa

februar

February

March ::

ma

mar

marc

march

April ::

ap

apr

apri

april

May ::

ma

may

 June ::

jun

june

July ::

ju

jul

july

August ::

au

aug

98 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

augu

august

September ::

se

sep

sept

septe

septem

septemb

septembe

september

October ::

oc

oct

octo

octob

octobe

october

November ::

no

nov

nove

novem

novemb

novembe

november

99 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

December ::

de

dec

dece

decem

decemb

decembe

december

V0198:

Parsing rules for Date.parse Date strings:

1. The string to be parsed is converted to lower case before applying these

rules.

2. The above grammar defines by means of NumericDateTokens or

AlphaDateTokens the following components of a date object: weekday,

year, month, date, hours, minutes, seconds, time zone, AD/BC flag,

AM/PM flag.

3. Any Date string has to define at least year, month, date components. No

component can be multiple defined.

4. Except for cases that are explicitly specified otherwise, components can

be in any order.

5. OffsetFlags:

‗+‘ and ‗-‗(when not following a number) act as offset classifier. The

next numeric component following an offset classifier is classified as

an offset value. The numeric component doesn‘t have to follow

immediately ‗+/-‗.

+offset and –offset cannot be specified before the year field. +/-

offsets refers to UTC time zone and set the time zone to UTC. It is

an error to have a time zone component following a +/- offset.

6. Time classification of numeric components. The separator char ‗:‘ acts as

a time classifier:

': ' following a number classifies the previous numeric component as

'hour'

 ':' following a number classified as 'hour' will classify the next

numeric component as 'minute'. The next numeric component doesn't

have to follow immediately

100 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

':' following a numeric component classified as 'minute' will

classify the next numeric component as 'seconds'. The next number

doesn't have to follow immediately

7. Date classification of numeric components.

A not classified number with value >=70 is always classified as

‗year‘. Even when it is followed by a ':' and could be classified as

hour. In this case ‗:‘ is a simple separator.

A number not classified by a classifier is always classified as a ‗date‘.

 ‗/‘ and ‗-‗ separator chars can act as classifiers:

'/' or '-' following a numeric component classifies that numeric

component as 'month'

 '/' or '-' following a numeric component classified as 'month' will

classify the next numeric component as a 'date'. The next

numeric component does not have to follow immediately

 '/' or '-' following a numeric component classified as 'date' will

classify the next numeric component as a 'year'. The next

numeric component does not have to follow immediately

8. The week day is ignored regardless of whether it is correct or incorrect.

9. The default value for AD/BC flag is AD.

10. When AM/PM flag is not defined the default interpretation for hours is

24hr notation. AM flag is ignored when the time is > 13:00:00. When PM

flag is used the time has to be <12:00.

V0199:

Algorithm for computing the time value:

Via classification, numeric components, and alpha components, numeric

values are calculated for: year, month, date, time. The following

adjustments are done because of the flags, offsets, and timezones:

1. If the BC/AD flag is BC, year = -year + 1. Note that 1 BC is year 0 and 2

BC is year -1.

2. If the BC/AD flag is AD and the year value is <100, then year =

year+1900. This rule allows the short form for year. For example, 99 stands

for 1999.

3. The time value (time in the day) is calculated in seconds from the hour,

minute, and seconds components. AM/PM flag can change the time value:

- If no AM/PM flag is present the time is considered in 24hrs notation

and no adjustment is done.

- If time >= 12 * 3600 and time < 13*3600 and AM then time = time –

12*3600 (for example, 12:45 AM means 0:45)

- If PM and time <12*3600, then time = time + 12 *3600 (for example,

2PM means 14:00)

101 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

4. Zone adjustment. The result of 3 is adjusted by the zone disp values

specified below. Check the values for TimeZone and MilitaryTimeZone.

If ‗zone‘ is the value for a given zone, the time is adjusted by: time = time -

zone * 60;

5. Offset adjustment. The offset value applies to the time in UTC zone. Let

nn be the value of the numeric component following an offset: The formula

for the value in seconds that adds up to the UTC time is:

 If nn <24

vOffset = 60* nn * 60

 If nn >=24

vOffset = 60* (nn modulo 100) + (floor (nn / 100)) * 60))

 time = Result(4) - vOffset * 60;

6. Date adjustment. Set date = date -1

7 Month adjustment. Set month = (month-1) .

8. Final calculation:

 year = year + floor(month / 12);

 month = Remainder(month, 12)

 day = day + DayFromYear(year);

 day = day + DayNumbersForTheMonthOfALeapYear(month);

 if mon >= 2 && year is not a leap then day = day - 1;

 result = day * 86400000 + time;

9. If no time zone was specified, consider this time in the current local time

zone and get the UTC displacement of the time.

TimeZone UTC displacement

est -5

edt -4

cst -6

cdt -5

mst -7

mdt -6

pst -8

pdt -7

gmt 0

utc 0

MilitaryTimeZone UTC displacement

z 0

y 12

x 11

w 10

102 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

v 9

u 8

t 7

s 6

r 5

q 4

p 3

o 2

n 1

a -1

b -2

c -3

d -4

e -5

f -6

g -7

h -8

i -9

k -10

l -10

m 12

2.1.107 [ECMA-262] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [,

minutes [, seconds [, ms]]]]])

V0200:

The changes in the following algorithm specify JScript 5.x‘s behaviour when this

function is called with fewer than two arguments.

1. If year is supplied use Call ToNumber(year) ; else use 0.

2. If month is supplied use Call ToNumber(month) ; else use 0.

3. If date is supplied use ToNumber(date); else use 1.

4. If hours is supplied use ToNumber(hours); else use 0.

5. If minutes is supplied use ToNumber(minutes); else use 0.

6. If seconds is supplied use ToNumber(seconds); else use 0.

7. If ms is supplied use ToNumber(ms); else use 0.

8. If Result(1) is not NaN and 0  ToInteger(Result(1))  99, Result(8) is

1900+ToInteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Return TimeClip(MakeDate(Result(9), Result(10))).

The length property of the UTC function is 7.

2.1.108 [ECMA-262] Section 15.9.5, Properties of the Date Prototype Object

V0201:

The Date prototype object is itself a Date object (its [[Class]] is "Date") whose value is 0 NaN.

103 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

For JScript 5.x, the time value of the Date prototype object is 0 rather than NaN.

2.1.109 [ECMA-262] Section 15.9.5.2, Date.prototype.toString ()

V0202:

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form.

For JScript 5.x running on Windows, the string is determined as follows:

1. Let tv be this time value.
2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).
4. Using t, create a string value with the following format, based upon the format

description below. The format is: DDDbMMMbddbhh:mm:ssbzzzzzzbyyyyy
5. Return Result(4).

Where the format are defined as follows:
 DDD The day of the week abbreviation from the set: Sun Mon Tue

Wed Thu Fri Sat

 b A single space character
 MMM The month name abbreviation from the set: Jan Feb Mar

Apr May Jun Jul Aug Sep Oct Nov Dec

 dd The day of the month as one or two decimal digits, from 1 to

31.

 hh The number of complete hours since midnight as two decimal
digits.

 : The colon character.
 mm The number of complete minutes since the start of the hour

as two decimal digits.
 ss the number of complete seconds since the start of the minute

as two decimal digits.
 zzzzzz If the local time offset from UTC is an integral number of

hours between -8 and -5 inclusive, this is the standard
abbreviation for the corresponding North American time zone
which is one of : EST EDT CST CDT MST MDT PST PDT.

Otherwise this is the characters UTC followed by a + or –

character corresponding to the sign of the local offset from
UTC followed by the two decimal digit hours part of the UTC

offset and the two decimal digit minutes part of the UTC
offset.

 yyyyy If YearFromTime(t) is > then this is 3 or more digits that is
the value of YearFromTime(t). Otherwise, this is the one or
more decimal digits corresponding to the number that is 1-
YearFromTime(t) followed by a single space character
followed by the characters B.C.

V0203:

NOTE

For any Date value d with a milliseconds amount of zero, the result of Date.parse(d.toString())is

equal to d.valueOf(). See [ECMA-262] section 15.9.4.2.. It is intended that for any Date value d, the

result of Date.prototype.parse(d.toString())(15.9.4.2) is equal to d.

104 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The above change corrects a specification error that is documented in the ES3 errata.

JScript 5.x implements the correction.

2.1.110 [ECMA-262] Section 15.9.5.3, Date.prototype.toDateString ()

V0204:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the ―date‖ portion of the Date in the current time zone in a convenient, human-
readable form.

For JScript 5.x running on Windows, the string is determined as follows:

1. Let tv be this time value.
2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).
4. Using t, create a string value with the following format, based upon the format

description given in [ECMA-262] Section 15.9.5.3. The format is:

DDDbMMMbddbyyyyy

5. Return Result(4).

2.1.111 [ECMA-262] Section 15.9.5.4, Date.prototype.toTimeString ()

V0205:

Date.prototype.toTimeString ()

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the ―time‖ portion of the Date in the current time zone in a convenient, human-
readable form.

For JScript 5.x running on Windows, the string is determined as follows:

1. Let tv be this time value.
2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).
4. Using t, create a string value with the following format, based upon the format

description given in [ECMA-262] Section 15.9.5.3. The format is:

hh:mm:ssbzzzzzz
5. Return Result(4).

2.1.112 [ECMA-262] Section 15.9.5.5, Date.prototype.toLocaleString ()

V0206:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the Date in the current time zone in a convenient, human-readable form that
corresponds to the conventions of the host environment‘s current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding the
date value. This may include applying any appropriate civil time adjustments.

105 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2. If the year of Result(1) is <= 1600 or >=10000, then return the result of
calling the standard built-in Date.prototype.toString with Result(1) as its

this object.
3. Use the Microsoft Windows GetDateFormat system function to format the date

and time corresponding to Result(1). The format flags passed to the function is
DATE_LONGDATE for most locales. However, if the current locale‘s language is

Arabic or Hebrew the flags passed are DATE_LONGDATE | Date_RTLREADING.

4. If the call in step 3 failed and the current locale language is Hebrew, then
throw a RangeError exception.

5. Use the Microsoft Windows GetTimeFormat system function to format the date

and time corresponding to Result(1). The format flags passed to the default
value, 0.

6. If the calls in either step 3 or step 5 failed, then return the result of calling the
standard built-in Date.prototype.toString with Result(1) as its this object.

7. Return the string value that is the result of concatenating Result(3), a space
character, and Result(5).

2.1.113 [ECMA-262] Section 15.9.5.6, Date.prototype.toLocaleDateString ()

V0207:

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the ―date‖ portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment‘s current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding the
date value. This may include applying any appropriate civil time adjustments.

2. If the year of Result(1) is <= 1600 or >=10000, then return the result of
calling the standard built-in Date.prototype.toString with Result(1) as its

this object.
3. Use the Microsoft Windows GetDateFormat system function to format the date

and time corresponding to Result(1). The format flags passed to the function is
DATE_LONGDATE for most locales. However, if the current locale‘s language is

Arabic or Hebrew the flags passed are DATE_LONGDATE | Date_RTLREADING.

4. If the call in step 3 failed and the current locale language is Hebrew, then
throw a RangeError exception.

5. If the call in step 3 failed, then return the result of calling the standard built-in
Date.prototype.toString with Result(1) as its this object.

6. Return the string value that is the Result(3).

2.1.114 [ECMA-262] Section 15.9.5.7, Date.prototype.toLocaleTimeString ()

V0208:

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the ―time‖ portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment‘s current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding the
date value. This may include applying any appropriate civil time adjustments.

106 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2. If the year of Result(1) is <= 1600 or >=10000, then return the result of
calling the standard built-in Date.prototype.toString with Result(1) as its

this object.
3. Use the Windows GetTimeFormat system function to format the date and time

corresponding to Result(1). The format flags passed to the default value, 0.
4. If the call in step 3failed, then return the result of calling the standard built-in

Date.prototype.toString with Result(1) as its this object.

5. Return the string value that is Result(3).

2.1.115 [ECMA-262] Section 15.9.5.28, Date.prototype.setMilliseconds (ms)

V0209:

0. If the argument ms is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t),

Result(2)).

4. Compute UTC(MakeDate(Day(t), Result(3))).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.116 [ECMA-262] Section 15.9.5.29, Date.prototype.setUTCMilliseconds (ms)

V0210:

0. If the argument ms is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t),

Result(2)).

4. Compute MakeDate(Day(t), Result(3)).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.117 [ECMA-262] Section 15.9.5.30, Date.prototype.setSeconds (sec [, ms])

V0211:

If ms is not specified, this function behaves as if ms were specified with the

value getMilliseconds().

0. If the argument sec is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2),

Result(3)).

5. Compute UTC(MakeDate(Day(t), Result(4))).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

107 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The length property of the setSeconds method is 2.

2.1.118 [ECMA-262] Section 15.9.5.31, Date.prototype.setUTCSeconds (sec [, ms])

V0212:

If ms is not specified, this function behaves as if ms were specified with the

value getUTCMilliseconds().

0. If the argument sec is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2),

Result(3)).

5. Compute MakeDate(Day(t), Result(4)).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

The length property of the setUTCSeconds method is 2.

2.1.119 [ECMA-262] Section 15.9.5.33, Date.prototype.setMinutes (min [, sec [, ms]])

V0213:

If sec is not specified, this function behaves as if sec were specified with the

value getSeconds().

If ms is not specified, this function behaves as if ms were specified with the

value getMilliseconds().

0. If the argument min is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call

ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Day(t), Result(5))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

The length property of the setMinutes method is 3.

2.1.120 [ECMA-262] Section 15.9.5.34, Date.prototype.setUTCMinutes (min [, sec [,

ms]])

V0214:

If sec is not specified, this function behaves as if sec were specified with the

value getUTCSeconds().

108 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

If ms is not specified, this function behaves as if ms were specified with the

value getUTCMilliseconds().

0. If the argument min is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call

ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute MakeDate(Day(t), Result(5)).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

The length property of the setUTCMinutes method is 3.

2.1.121 [ECMA-262] Section 15.9.5.35, Date.prototype.setHours (hour [, min [, sec [,

ms]]])

V0215:

If min is not specified, this function behaves as if min were specified with

the value getMinutes().

If sec is not specified, this function behaves as if sec were specified with the

value getSeconds().

If ms is not specified, this function behaves as if ms were specified with the

value getMilliseconds().

0. If the argument hour is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call

ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call

ToNumber(sec).

5. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute UTC(MakeDate(Day(t), Result(6))).

8. Set the [[Value]] property of the this value to TimeClip(Result(7)).
9. Return the value of the [[Value]] property of the this value.

The length property of the setHours method is 4.

2.1.122 [ECMA-262] Section 15.9.5.36, Date.prototype.setUTCHours (hour [, min [,

sec [, ms]]])

V0216:

If min is not specified, this function behaves as if min were specified with

the value getUTCMinutes().

109 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

If sec is not specified, this function behaves as if sec were specified with the

value getUTCSeconds().

If ms is not specified, this function behaves as if ms were specified with the

value getUTCMilliseconds().

0. If the argument hour is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call

ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call

ToNumber(sec).

5. If ms is not specified, compute msFromTime(t); otherwise, call

ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute MakeDate(Day(t), Result(6)).

8. Set the [[Value]] property of the this value to TimeClip(Result(7)).
9. Return the value of the [[Value]] property of the this value.

The length property of the setUTCHours method is 4.

2.1.123 [ECMA-262] Section 15.9.5.36, Date.prototype.setDate (date)

V0217:

1. If the argument date is not present, throw a TypeError exception.

2. Let t be the result of LocalTime(this time value).

3. Call ToNumber(date).

4. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

5. Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).

6. Set the [[Value]] property of the this value to TimeClip(Result(4)).

7. Return the value of the [[Value]] property of the this value.

2.1.124 [ECMA-262] Section 15.9.5.37, Date.prototype.setUTCDate (date)

V0218:

0. If the argument date is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber (date).

3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

4. Compute MakeDate(Result(3), TimeWithinDay(t)).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.125 [ECMA-262] Section 15.9.5.38, Date.prototype.setMonth (month [, date])

V0219:

If date is not specified, this function behaves as if date were specified with

the value getDate().

0. If the argument month is not present, throw a TypeError exception.

110 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call

ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

The length property of the setMonth method is 2.

2.1.126 [ECMA-262] Section 15.9.5.39, Date.prototype.setUTCMonth (month [, date])

V0220:

If date is not specified, this function behaves as if date were specified with

the value getUTCDate().

0. If the argument month is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call

ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute MakeDate(Result(4), TimeWithinDay(t)).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

The length property of the setUTCMonth method is 2.

2.1.127 [ECMA-262] Section 15.9.5.40, Date.prototype.setFullYear (year [, month [,

date]])

V0221:

If month is not specified, this function behaves as if month were specified

with the value getMonth().

If date is not specified, this function behaves as if date were specified with

the value getDate().

0. If the argument year is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value); but if this time value is

NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call

ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call

ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

111 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The length property of the setFullYear method is 3.

2.1.128 [ECMA-262] Section 15.9.5.41, Date.prototype.setUTCFullYear (year [, month

[, date]])

V0222:

If month is not specified, this function behaves as if month were specified

with the value getUTCMonth().

If date is not specified, this function behaves as if date were specified with

the value getUTCDate().

0. If the argument year is not present, throw a TypeError exception.

1. Let t be this time value; but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call

ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call

ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute MakeDate(Result(5), TimeWithinDay(t)).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

The length property of the setUTCFullYear method is 3.

2.1.129 [ECMA-262] Section 15.10.1, Patterns

V0223:

QuantifierPrefix ::

*

+
?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

{ QuantZeroesopt 1} QuantifierPrefix

{ QuantZeroesopt 1, QuantZeroesopt 1} QuantifierPrefix

QuantZeroes ::

QuantZeroesopt 0

CharacterClass ::

[]ClassRanges]

[[lookahead  {^}] NonemptyClassRanges]

[^ NonemptyClassRanges]

112 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.130 [ECMA-262] Section 15.10.2.1, Notation

V0224:

Furthermore, the descriptions below use the following internal data structures:

 A CharSet is a mathematical set of characters.

 A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is an
internal array of NCapturingParens values. States are used to represent partial match states in
the regular expression matching algorithms. The endIndex is one plus the index of the last input
character matched so far by the pattern, while captures holds the results of capturing
parentheses. The nth element of captures is either a string that represents the value obtained by
the nth set of capturing parentheses or undefined the empty string if the nth set of capturing

parentheses hasn't been reached yet. Due to backtracking, many states may be in use at any
time during the matching process.

2.1.131 [ECMA-262] Section 15.10.2.2, Pattern

V0225:

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Return an internal closure that takes two arguments, a string str and an

integer index, and performs the following:

1. Let Input be the given string str. This variable will be used throughout

the functions in [ECMA-262] section 15.10.2.

2. Let InputLength be the length of Input. This variable will be used

throughout the functions in [ECMA-262] section 15.10.2.

3. Let c be a Continuation that always returns its State argument as a

successful MatchResult.

4. Let cap be an internal array of NCapturingParens undefined empty

string values, indexed 1 through NCapturingParens.

5. Let x be the State (index, cap).
6. Call m(x, c) and return its result.

Informative comments: A Pattern evaluates ("compiles") to an internal function value.
RegExp.prototype.exec can then apply this function to a string and an offset within the string to

determine whether the pattern would match starting at exactly that offset within the string, and, if it

does match, what the values of the capturing parentheses would be. The algorithms in [ECMA-262]

section 15.10.2 are designed so that compiling a pattern may throw a SyntaxError RegExpError

exception; on the other hand, once the pattern is successfully compiled, applying its result function to
find a match in a string cannot throw an exception (except for any host-defined exceptions that can occur
anywhere such as out-of-memory).

2.1.132 [ECMA-262] Section 15.10.2.3, Disjunction

V0226:

Informative comments: The | regular expression operator separates two alternatives. The pattern first

tries to match the left Alternative (followed by the sequel of the regular expression); if it fails, it tries to

match the right Disjunction (followed by the sequel of the regular expression). If the left Alternative, the
right Disjunction, and the sequel all have choice points, all choices in the sequel are tried before moving
on to the next choice in the left Alternative. If choices in the left Alternative are exhausted, the right

113 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Disjunction is tried instead of the left Alternative. Any capturing parentheses inside a portion of the
pattern skipped by | produce undefined empty string values instead of strings. Thus, for example,

/a|ab/.exec("abc")

returns the result "a" and not "ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined "", "bc", undefined "", "bc"]

and not

["abc", "ab", undefined "", "ab", "c", "c", undefined ""]

2.1.133 [ECMA-262] Section 15.10.2.5, Term

V0227:

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom to obtain a Matcher m.

2. Evaluate Quantifier to obtain the three results: an integer min, an integer

(or ) max, and boolean greedy.

3. If max is finite and less than min, then throw a SyntaxError

RegExpError exception.

4. Let parenIndex be the number of left capturing parentheses in the entire

regular expression that occur to the left of this production expansion's
Term. This is the total number of times the Atom :: (Disjunction)

production is expanded prior to this production's Term plus the total
number of Atom :: (Disjunction) productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the

expansion of this production's Atom. This is the total number of Atom :: (

Disjunction) productions enclosed by this production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x

and a Continuation c, and performs the following:

1. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex,
parenCount) and return its result.

V0228:

The internal helper function RepeatMatcher takes eight parameters, a

Matcher m, an integer min, an integer (or ) max, a boolean greedy, a State

x, a Continuation c, an integer parenIndex, and an integer parenCount, and

performs the following:

1. If max is zero, then call c(x) and return its result.

2. Create an internal Continuation closure d that takes one State argument

y and performs the following:

1. If min is zero and y's endIndex is equal to x's endIndex, then return

failure.

2. If min is zero then let min2 be zero; otherwise let min2 be min–1.

114 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

3. If max is , then let max2 be ; otherwise let max2 be max–1.

4. Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex,

parenCount) and return its result.

3. Let cap be a fresh copy of x's captures internal array.

4. For every integer k that satisfies parenIndex < k and k 

parenIndex+parenCount, set cap[k] to undefined.

5. Let e be x's endIndex.

6. Let xr be the State (e, cap).

7. If min is not zero, then call m(xr, d) and return its result.

8. If greedy is true, then go to step 12.

9. Call c(x) and let z be its result.

10. If z is not failure, return z.

11. Call m(xr, d) and return its result.

12. Call m(xr, d) and let z be its result.

13. If z is not failure, return z.

14. Call c(x) and return its result.

V0229:

The above ordering of choice points can be used to write a regular

expression that calculates the greatest common divisor of two numbers

(represented in unary notation). The following example calculates the gcd of

10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

Step 4 of the RepeatMatcher clears Atom's captures each time Atom is

repeated. We can see its behaviour in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings

contained in the quantified Atom, which in this case includes capture strings

numbered 2, 3, and 4.

JScript 5.x does not clear an Atom’s captures each time the Atom is repeated.

2.1.134 [ECMA-262] Section 15.10.2.7, Quantifier

V0230:

The productions QuantifierPrefix :: { QuantZeroesopt 1} QuantifierPrefix and

QuantifierPrefix :: { QuantZeroesopt 1, QuantZeroesopt 1} evaluate by

returning the result of evaluating QuantifierPrefix.

115 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.135 [ECMA-262] Section 15.10.2.8, Atom

V0231:

The form (?! Disjunction) specifies a zero-width negative lookahead. In

order for it to succeed, the pattern inside Disjunction must fail to match at

the current position. The current position is not advanced before matching

the sequel. Disjunction can contain capturing parentheses, but

backreferences to them only make sense from within Disjunction itself.

Backreferences to these capturing parentheses from elsewhere in the pattern

always return undefined the empty string because the negative lookahead

must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a

b, another n a's (specified by the first \2) and a c. The second \2 is outside

the negative lookahead, so it matches against undefined and therefore

always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined "", "abaac"]

2.1.136 [ECMA-262] Section 15.10.2.9, AtomEscape

V0232:

The production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then go to step 6.

3. Let ch be E's character.

4. Let A be a one-element CharSet containing the character ch.

5. Call CharacterSetMatcher(A, false) and return its Matcher result.

6. E must be an integer. Let n be that integer.

7. If n=0 or n>NCapturingParens then return failure throw a SyntaxError

exception.

8. Return an internal Matcher closure that takes two arguments, a State x

and a Continuation c, and performs the following:

1. Let cap be x's captures internal array.

2. Let s be cap[n].

3. If s is undefined the empty string, return failure then call c(x) and

return its result.

4. Let e be x's endIndex.

5. Let len be s's length.

6. Let f be e+len.

7. If f>InputLength, return failure.

8. If there exists an integer i between 0 (inclusive) and len (exclusive)

such that Canonicalize(s[i]) is not the same character as

Canonicalize(Input [e+i]), then return failure.

9. Let y be the State (f, cap).
10. Call c(y) and return its result.

V0233:

116 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Informative comments: An escape sequence of the form \ followed by a nonzero decimal number n

matches the result of the nth set of capturing parentheses (see [ECMA-262] section 15.10.2.11). It is

an error if the regular expression has fewer than n capturing parentheses. If the regular expression has n
or more capturing parentheses but the nth one is undefined the empty string because it hasn't captured

anything, then the backreference always succeeds.

2.1.137 [ECMA-262] Section 15.10.2.12, CharacterClassEscape

V0234:

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the

characters that are on the right-hand side of the WhiteSpace (7.2) or LineTerminator ([ECMA-262]

section 7.3) productions plus the characters <TAB>, <FF>, and <SP> < (characters \u0009, \u000C,
and \u0020).

In JScript 5.x, the regular expressions \s does not match any Unicode category Zs

characters other than those explicitly listed in the preceding paragraph.

2.1.138 [ECMA-262] Section 15.10.2.13, CharacterClass

V0235:

The production CharacterClass :: []ClassRanges] evaluates by returning the result of unioning the
CharSet containing the one character] with the result of evaluating ClassRanges.

V0236:

The production CharacterClass :: [[lookahead  {^}] NonemptyClassRanges] evaluates by evaluating

NonemptyClassRanges to obtain a CharSet and returning that CharSet and the boolean false.

V0237:

The production CharacterClass :: [^ NonemptyClassRanges] evaluates by evaluating

NonemptyClassRanges to obtain a CharSet and returning that CharSet and the boolean true.

2.1.139 [ECMA-262] Section 15.10.2.15, NonemptyClassRanges

V0238:

The internal helper function CharacterRange takes two CharSet parameters A

and B and performs the following:

1. If A does not contain exactly one character or B does not contain exactly

one character then throw a SyntaxError RegExpError exception.

2. Let a be the one character in CharSet A.

3. Let b be the one character in CharSet B.

4. Let i be the code point value of character a.

5. Let j be the code point value of character b.

6. If I > j then throw a SyntaxError RegExpError exception.
7. Return the set containing all characters numbered i through j, inclusive.

2.1.140 [ECMA-262] Section 15.10.2.19, ClassEscape

V0239:

The production ClassEscape :: DecimalEscape evaluates as follows:

117 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then return the empty CharSet throw a

SyntaxError exception.

3. Let ch be E's character.
4. Return the one-element CharSet containing the character ch.

V0240:

Informative comments: A ClassAtom can use any of the escape sequences that are allowed in the rest
of the regular expression except for \b, \B, and backreferences. Inside a CharacterClass, \b means the

backspace character, while \B and backreferences are ignored raise errors. Using a backreference inside

a ClassAtom causes an error.

2.1.141 [ECMA-262] Section 15.10.4.1, new RegExp (pattern, flags)

V0241:

If pattern is an object R whose [[Class]] property is "RegExp" and flags is undefined, then let P be the

pattern used to construct R and let F be the flags used to construct R. If pattern is an object R whose
[[Class]] property is "RegExp" and flags is not undefined, then throw a TypeError RegExpError

exception. Otherwise, let P be the empty string if pattern is undefined and ToString(pattern) otherwise,
and let F be the empty string if flags is undefined and ToString(flags) otherwise.

V0242:

If F contains any character other than “g”, “i”, or “m”, or if it contains the same one more than once,

then throw a SyntaxError RegExpError exception.

V0243:

If P's characters do not have the form Pattern, then throw a SyntaxError RegExpError exception.

Otherwise let the newly constructed object have a [[Match]] property obtained by evaluating
("compiling") Pattern. Note that evaluating Pattern may throw a SyntaxError RegExpError exception.
(Note: if pattern is a StringLiteral, the usual escape sequence substitutions are performed before the
string is processed by RegExp. If pattern must contain an escape sequence to be recognised by RegExp,

the ―\‖ character must be escaped within the StringLiteral to prevent its being removed when the

contents of the StringLiteral are formed.)

V0244:

The source property of the newly constructed object is set to an implementation-defined string value in

the form of a Pattern based on P.

For JScript 5.x, when pattern is an object R whose [[Class]] property is RegExp the

source property of the newly constructed object is set to the same string value as the

value of the source property of pattern. Otherwise, the source property of the newly

constructed object is set to P.

V0245:

The options property of the newly constructed object is set as described in [ECMA-262] section

15.10.7.5+1

2.1.142 [ECMA-262] Section 15.10.6, Properties of the RegExp Prototype Object

V0246:

118 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object prototype.
The value of the internal [[Class]] property of the RegExp prototype object is "RegExp""Object".

2.1.143 [ECMA-262] Section 15.10.6.2, RegExp.prototype.exec (string)

V0247:

Performs a regular expression match of string against the regular expression

and returns an Array object containing the results of the match, or null if

the string did not match

The string ToString(string) is searched for an occurrence of the regular

expression pattern as follows:

1. Let S be the value of ToString(string).

2. Let length be the length of S.
3. Let lastIndex be the value of the lastIndex property.

4. Let i be the value of ToInteger(lastIndex); however if an exception is

thrown while evaluating ToInteger, let i=0 or if Result(1) of the ToInteger

algorithm is NaN, let i=−1.
5. If the global property is false, let i = 0.

6. If I i < 0 or I i > length then set lastIndex to 0 and return null.

7. Call [[Match]], giving it the arguments S and i. If [[Match]] returned

failure, go to step 8; otherwise let r be its State result and go to step

10.

8. Let i = i+1.

9. Go to step 6.

10. Let e be r's endIndex value.
11. If the global property is true, set lastIndex to e.

12. Let n be the length of r's captures array. (This is the same value as

[ECMA-262] section 15.10.2.1's NCapturingParens.)

a. The values of the RegExp.input and RegExp.$_ properties are set to

S.
b. The value of the RegExp.index property is set to the position of the

matched substring within the complete string S.
c. The value of the RegExp.lastIndex property is set to e.

d. The values of the RegExp.input and RegExp.$_ properties are set to

S.

e. The values of the RegExp.lastMatch and RegExp['$&'] properties

are set to the substring of S that was matched.
f. If n is 0, set the values of the RegExp.lastParen and RegExp['$+']

properties are set to the empty string, otherwise set them to the result

of calling ToString on the last element of r‘s captures array.
g. The values of the RegExp.leftContext and RegExp["$`"] properties

are set to the substring of S, starting at character position 0 and

continuing up to but not including the position of the matched

substring within the complete string S.
h. The values of the RegExp.rightContext and RegExp["$'"] properties

are set to the substring of S, starting at character position e and

continuing to the last character of S.

119 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

i. The value of each of the properties RegExp.$1, RegExp.$2,

RegExp.$3, RegExp.$4, RegExp.$5, RegExp.$6, RegExp.$7,

RegExp.$8, and RegExp.$9 is set to the empty string.

j. For each integer i such that i > 0 and i  min(9,n), set the property of

RegExp that has the name of the string '$' concatenated with

ToString(i) to the ith element of r's captures array.

13. Return a new array with the following properties:

 The index property is set to the position of the matched substring within the

complete string S.

 The input property is set to S.

 The lastIndex property is set to e.

 The length property is set to n + 1.

 The 0 property is set to the matched substring (i.e. the portion of S between offset

i inclusive and offset e exclusive).

 For each integer i such that I > 0 and I  n, set the property named ToString(i) to

the ith element of r's captures array.

2.1.144 [ECMA-262] Section 15.10.6.4, RegExp.prototype.toString ()

V0248:

Let src be a string in the form of a Pattern representing the current regular expression. src may or may
not be identical to the source property or to the source code supplied to the RegExp constructor;

however, if src were supplied to the RegExp constructor along with the current regular expression's flags,
the resulting regular expression must behave identically to the current regular expression.

For JScript 5.x, src is identical to the value of the source property.

V0249:

toString returns a string value formed by concatenating the strings "/", src, and "/"; plus "g" if the

global property is true, "i" if the ignoreCase property is true, and "m" if the multiline property is

true.

For JScript 5.x, the flag characters appear in the order "igm" rather than the order

"gim".

V0250:

NOTE

An implementation may choose to take advantage of src being allowed to be different from the source
passed to the RegExp constructor to escape special characters in src. For example, in the regular
expression obtained from new RegExp("/"), src could be, among other possibilities, "/" or "\/". The

latter would permit the entire result ("/\//") of the toString call to have the form

RegularExpressionLiteral.

JScript 5.x does not do such escaping.

120 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.145 [ECMA-262] Section 15.11.1.1, Error ([argument1 [, argument2]]message)

V0251:

When Error is called as a function the call is equivalent to calling the Error constructor passing the same

arguments. The [[Prototype]] property of the newly constructed object is set to the original Error
prototype object, the one that is the initial value of Error.prototype (15.11.3.1).

The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is set

to ToString(message).

2.1.146 [ECMA-262] Section 15.11.2.1, new Error (messageOrNumber)

V0252:

When the Error constructor is called with one argument the following steps

are taken:

1. The [[Prototype]] property of the newly constructed object is set to

the original Error prototype object, the one that is the initial value of
Error.prototype ([ECMA-262] section 15.11.3.1).

2. The [[Class]] property of the newly constructed Error object is set to

"Error".

3. Let message be the empty string.

4. Let number be NaN.

5. If messageOrNumber is undefined, then go to step 8.

6. Let number be ToNumber(messageOrNumber).

7. If number is not NaN, then go to step 9.

8. Let message be ToString(messageOrNumber).
9. The description property of the newly constructed object is set to

message.
10. If the argument message is not undefined, the The message property of

the newly constructed object is set to ToString(message).
11. The name property of the newly constructed object is set to "Error".

12. If number is NaN, then go to step 14.
13. The number property of the newly constructed object is set to number.

14. Return the newly constructed object.

2.1.147 [ECMA-262] Section 15.44.4.3, Properties of the Error Prototype Object

V0253:

The Error prototype object is itself an Error object (its [[Class]] is "Error" "Object").

In JScript 5.x the [[Class]] of the Error prototype object is "Object".

The value of the internal [[Prototype]] property of the Error prototype object is the Object prototype

object ([ECMA-262] section 15.2.3.1).

2.1.148 [ECMA-262] Section 15.11.4.3, Error.prototype.message

V0254:

121 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

The initial value of Error.prototype.message is an implementation-defined string.

In JScript 5.x the initial value is the empty string.

2.1.149 [ECMA-262] Section 15.11.4.4, Error.prototype.toString ()

Returns an implementation defined string.

In JScript 5.8, the returned string is determined as follow:

1. Let name be the result of calling the [[Get]] method of the this object with
argument "name".

2 If name is not undefined, let name be ToString(name) however if ToString

throws an exception ignore the exception and set name to undefined..
3. Let message be the result of calling the [[Get]] method of the this object

with argument "message".

4 If message is not undefined, let message be ToString(message) however if
ToString throws an exception ignore the exception and set message to
undefined.

5. If name and message are both undefined, then return the string value
"[object Error]"

6 If name is undefined, return message.
7. If message is undefined, return name.
8. Concatenate name and the string value ": ".

9. Concatenate Result(8) and message.
10 Return Result(9)

In JScript 5.7 the returned string is determined as follow:
1. Return the string value "[object Error]"

2.1.150 [ECMA-262] Section 15.11.5, Properties of Error Instances

V0255:

Error instances inherit properties from their [[Prototype]] object as specified above and also have the
following properties. Error instances have no special properties beyond those inherited from the Error

prototype object.

2.1.151 [ECMA-262] Section 15.11.6.2, RangeError

V0256:

Indicates a numeric value has exceeded the allowable range. See [ECMA-262] sections 15.4.2.2,

15.4.5.1, 15.7.4.5, 15.7.4.6, and 15.7.4.7.

Also see the following section in [MS-ES3EX]:

 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

 VBArray.prototype.lbound ([dimension])

 VBArray.prototype.ubound ([dimension])

2.1.152 [ECMA-262] Section 15.11.6.4, SyntaxError

V0257:

122 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Indicates that a parsing error has occurred. See [ECMA-262] sections 7.9+1.2, 15.1.2.1, 15.3.2.1,

15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19, and 15.10.4.1.

Also see the following section in [MS-ES3EX]:

 parse (text [, reviver])

2.1.153 [ECMA-262] Section 15.11.6.5, TypeError

V0258:

Indicates the actual type of an operand is different than the expected type. See [ECMA-262] sections

8.6.2, 8.6.2.6, 8.7.1, 9.9, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 15.2.4.7, 15.3.4, 15.3.4.2, 15.3.4.3,
15.3.4.4, 15.3.5.3, 15.4.4.2, 15.4.4.3, 15.4.4.5, 15.4.4.6, 15.4.4,7, 15.4.4.8, 15.4.4.9, 15.4.4.10,
15.4.4.11, 15.4.4.12, 15.4.4.13, 15.5.4.2, 15.5.4.3, 15.6.4, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2,
15.7.4.4, 15.9.5, 15.9.5.9, 15.9.5.27, 15.9.5.28, 15.9.5.29, 15.9.5.30, 15.9.5.31, 15.9.5.33, 15.9.5.34,
15.9.5.35, 15.9.5.36, 15.9.5.37, 15.9.5.38, 15.9.5.39, 15.9.5.40, 15.9.5.41, 15.10.4.1, and 15.10.6.

Also see the following sections in [MS-ES3EX]:

 RuntimeObject

 GetObject

 stringify (value [, replacer [, space]])

 new Enumerator ([collection])

 Enumerator.prototype.atEnd ()

 Enumerator.prototype.item ()

 Enumerator.prototype.moveFirst ()

 Enumerator.prototype.moveNext ()

 VBArray (value)

 new VBArray (value)

 VBArray.prototype.dimensions ()

 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

 VBArray.prototype.lbound ([dimension])

 VBArray.prototype.toArray ()

 VBArray.prototype.ubound ([dimension])

 VBArray.prototype.valueOf ()

 ActiveXObject (name [, location]))

 new ActiveXObject (name [, location]))

2.1.154 [ECMA-262] Section 15.11.7, NativeError Object Structure

V0259:

123 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the

NativeError objects defined in [ECMA-262] section 15.11.6. Each of these objects has the structure

described below, differing only in the name used as the constructor name instead of NativeError, in the
name property of the prototype object, and in the implementation-defined message property of the

prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate

error object name from [ECMA-262] section 15.11.6.

2.1.155 [ECMA-262] Section 15.11.7.2, NativeError (message)

V0260:

The [[Prototype]] property of the newly constructed object is set to the prototype object for this error
constructor. The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is set

to ToString(message). If the argument message is undefined the message property of the newly

constructed property is set to the empty string value.

2.1.156 [ECMA-262] Section 15.11.7.4, New NativeError (message)

V0261:

The [[Prototype]] property of the newly constructed object is set to the prototype object for this
NativeError constructor. The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is set

to ToString(message). If the argument message is undefined the message property of the newly

constructed property is set to the empty string value.

2.1.157 [ECMA-262] Section 15.11.7.10, NativeError.prototype.name

V0262:

The initial value of the message property of the prototype for a given NativeError constructor is an

implementation-defined string.

In JScript 5.x NativeError prototype objects do not have their own message property.

Instead they inherit their message property from Error.prototype.

2.1.158 [ECMA-262] Section A.1, Lexical Grammar

V0263:

LineTerminator :: See [ECMA-262] section 7.3

<LF>

<CR>

<LS>

<PS>

V0264:

MultiLineNotAsteriskChar :: See [ECMA-262] section 7.4
SourceCharacter but not asterisk * or <NUL>

124 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

V0265:

MultiLineNotForwardSlashOrAsteriskChar :: See [ECMA-262] section 7.4
SourceCharacter but not forward-slash / or asterisk * or <NUL>

V0266:

FutureReservedWord :: one of See [ECMA-262] section 7.5.3
abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

const goto private transient

debugger implements protected volatile

double import public

V0267:

DoubleStringCharacter :: See [ECMA-262] section 7.8.4

SourceCharacter but not double-quote " or backslash \ or LineTerminator or <NUL>

\ EscapeSequence

LineContinuation

V0268:

SingleStringCharacter :: See [ECMA-262] section 7.8.4

SourceCharacter but not single-quote ' or backslash \ or LineTerminator or <NUL>

\ EscapeSequence

LineContinuation

V0269:

LineContinuation :: See [ECMA-262] section 7.8.4

\ LineTerminatorSequence

V0270:

LineTerminatorSequence :: See [ECMA-262] section 7.8.4

<LF>

<CR> [lookahead  <LF>]

<CR> <LF>

V0271:

EscapeSequence :: See [ECMA-262] section 7.8.4

CharacterEscapeSequence
OctalEscapeSequence 0 [lookahead  DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

8

9

125 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

JScript 5.x also supports OctalEscapeSequence as specified in [ECMA-262] section
Annex B.1.2. That extension replaces the rule EscapeSequence :: 0 [lookahead 

DecimalDigit] with the rule EscapeSequence :: OctalEscapeSequence.

V0272:

SingleEscapeCharacter :: one of See [ECMA-262] section 7.8.4
' " \ b f n r t v

V0273:

RegularExpressionFirstChar :: See [ECMA-262] section 7.8.5
NonTerminator but not * or \ or / or <NUL>

BackslashSequence
RegularExpressionClass

V0274:

RegularExpressionChar :: See [ECMA-262] section 7.8.5
NonTerminator but not \ or / or <NUL>

BackslashSequence
RegularExpressionClass

V0275:

RegularExpressionClass :: See [ECMA-262] section 7.8.5
[RegularExpressionClassChars]

V0276:

RegularExpressionClassChars :: See [ECMA-262] section 7.8.5

[empty]

RegularExpressionClassChars RegularExpressionClassChar

V0277:

RegularExpressionClassChar :: See [ECMA-262] section 7.8.5

NonTerminator but not] or \ or <NUL>
BackslashSequence

V0278:

RegExpFlag :: one of See [ECMA-262] section 7.8.5
g i m

2.1.159 [ECMA-262] Section A.3, Expressions

V0279:

ObjectLiteral : See [ECMA-262] section 11.1.5
{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

126 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.1.160 [ECMA-262] Section A.4, Statements

V0280:

Statement : See [ECMA-262] section 12

Block

VariableStatement

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

DebuggerStatement
FunctionDeclaration

V0281:

Block : See [ECMA-262] section 12.1
{ StatementListopt }

{ StatementListopt };

V0282:

DebuggerStatement : See Section 2.1.46,
debugger ;

2.1.161 [ECMA-262] Section A.5, Functions and Programs

V0283:

FunctionDeclaration : See [ECMA-262] section 13

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

V0284:

FunctionExpression : See [ECMA-262] section 13

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

V0285:

JScriptFunction : See [ECMA-262] section 13
function FunctionBindingList (FormalParameterListopt) { FunctionBody }

V0286:

127 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

FunctionBindingList : See [ECMA-262] section 13

FunctionBinding

FunctionBindingList, FunctionBinding

V0287:

FunctionBinding : See [ECMA-262] section 13

SimpleFunctionBinding

MethodBinding
EventHandlerBinding

V0288:

SimpleFunctionBinding : See [ECMA-262] section 13
Identifier [lookahead  {NameQualifier, EventDesignator}]

V0289:

MethodBinding : See [ECMA-262] section 13
ObjectPath NameQualifier Identifier [lookahead  {NameQualifier, EventDesignator}]

V0290:

EventHandlerBinding : See [ECMA-262] section 13

ObjectPath EventDesignator Identifier

V0291:

ObjectPath : See [ECMA-262] section 13

Identifier
ObjectPath NameQualifier Identifier

V0292:

NameQualifier : . See [ECMA-262] section 13

V0293:

EventDesignator : :: See [ECMA-262] section 13

2.1.162 [ECMA-262] Section A.7, Regular Expressions

V0294:

QuantifierPrefix :: See [ECMA-262] section 15.10.1
*

+
?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

{ QuantZeroesopt 1} QuantifierPrefix

{ QuantZeroesopt 1, QuantZeroesopt 1} QuantifierPrefix

128 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

V0295:

QuantZeroes :: See [ECMA-262] section 15.10.1
QuantZeroesopt 0

V0296:

CharacterClass :: See [ECMA-262] section 15.10.1
[]ClassRanges]

[[lookahead  {^}] NonemptyClassRanges]

[^ NonemptyClassRanges]

2.1.163 [ECMA-262] Section B.1.2, String Literals

V0297:

OctalEscapeSequence ::

OctalDigit [lookahead  OctalDigit DecimalDigit]

ZeroToThree OctalDigit [lookahead  OctalDigit DecimalDigit]

FourToSeven OctalDigit

ZeroToThree OctalDigit OctalDigit

V0298:

Semantics

 The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.

 The CV of OctalEscapeSequence :: OctalDigit [lookahead  OctalDigit DecimalDigit]] is the
character whose code point value is the MV of the OctalDigit.

 The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead  OctalDigit DecimalDigit]]

is the character whose code point value is (8 times the MV of the ZeroToThree) plus the MV of
the OctalDigit.

2.1.164 [ECMA-262] Section B.2, Additional Properties

V0299:

Some implementations of ECMAScript have included additional properties for some of the standard native
objects. This non-normative annex suggests uniform semantics for such properties without making the

properties or their semantics part of this standard.

JScript 5.x implements all of the properties listed in [ECMA-262] section B.2. However,

in some cases identified below, the definition used by JScript 5.x differs from that in the
base specification.

2.1.165 [ECMA-262] Section B.2.3, String.prototype.substr (start, length)

V0300:

The substr method takes two arguments, start and length, and returns a substring of the result of

converting this object to a string, starting from character position start and running for length characters

(or through the end of the string is length is undefined). If start is negative, it is treated as zero

129 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

(sourceLength+start) where sourceLength is the length of the string. The result is a string value, not a
String object.

V0301:

1. Call ToString, giving it the this value as its argument.

2. Call ToInteger(start).

3. If length is undefined, use +; otherwise call ToInteger(length).

4. Compute the number of characters in Result(1).

5. If Result(2) is positive or zero, use Result(2); else use zero

max(Result(4)+Result(2),0).

6. Compute min(max(Result(3),0), Result(4)–Result(5)).

7. If Result(6)  0, return the empty string ―‖.

8. Return a string containing Result(6) consecutive characters from Result(1)

beginning with the character at position Result(5).

The length property of the substr method is 2.

2.1.166 [ECMA-262] Section B.2.4, Date.prototype.getYear ()

V0302:

When the getYear method is called with no arguments the following steps are taken:

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return YearFromTime(LocalTime(t))  1900.

For JScript 5.x, Date.prototype.getYear is functionally identical to

Date.prototype.getFullYear.

2.1.167 [ECMA-262] Section B.2.5, Date.prototype.setYear (year)

V0303:

When the setYear method is called with one argument year the following steps are taken:

0. If the argument year is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value); but if this time value is

NaN, let t be +0.

2. Call ToNumber(year).

3. If Result(2) is NaN, set the [[Value]] property of the this value to NaN and

return NaN.

4. If Result(2) is not NaN and 0  ToInteger(Result(2))  99 then Result(4) is

ToInteger(Result(2)) + 1900. Otherwise, Result(4) is Result(2).

5. Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

For JScript 5.x, Date.prototype.setYear is functionally identical to

Date.prototype.setFullYear.

130 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

2.2 Clarifications

The following sub-sections identify clarifications relative to <Target name>.

2.2.1 [ECMA-262] Section 7.8.5, Regular Expression Literals

C0001:

If the call to new RegExp generates an error, an implementation may, at its discretion, either report the

error immediately while scanning the program, or it may defer the error until the regular expression
literal is evaluated in the course of program execution.

JScript 5.x reports any errors new RegExp errors relating to a regular expression literal

while scanning the program.

2.2.2 [ECMA-262] Section 8.6.2, Internal Properties and Methods

C0002:

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]]

chain must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]
property must eventually lead to a null value). Whether or not a native object can have a host object as
its [[Prototype]] depends on the implementation.

JScript 5.x does not permit a native object to have a host object as its [[Prototype]].

2.2.3 [ECMA-262] Section 10.1.1, Function Objects

C0003:

Internal functions are built-in objects of the language, such as parseInt and Math.exp. An

implementation may also provide implementation-dependent internal functions that are not described in

this specification. These functions do not contain executable code defined by the ECMAScript grammar,
so they are excluded from this discussion of execution contexts.

In the above paragraph the phrase ―internal function‖ is actually being used as a

synonym for ―built-in objects‖ (as defined in [ECMA-262] section 4.3.7) that

are functions. The implementation-dependent built-in functions provided by

JScript 5.x are described in [ECMA-262] section 15.

2.2.4 [ECMA-262] Section 15.1.2.2, parseInt (string, radix)

C0004:

NOTE

parseInt may interpret only a leading portion of the string as an integer value; it ignores any characters

that cannot be interpreted as part of the notation of an integer, and no indication is given that any such
characters were ignored.

When radix is 0 or undefined and the string's number begins with a 0 digit not followed by an x or X,

then the implementation may, at its discretion, interpret the number either as being octal or as being
decimal. Implementations are encouraged to interpret numbers in this case as being decimal.

131 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

Jscript 5.x interprets numbers in this case as being octal.

2.3 Error Handling

There are no additional considerations for error handling.

2.4 Security

There are no additional security considerations.

132 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

3 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.

133 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

4 Index

 [[Construct]], 58
 [[Put]] (P, V), 30, 79
 Abstract Equality Comparison Algorithm,

The, 44
 Abstract Relational Comparison Algorithm,

The, 43
 Addition Operator (+), The, 41

 Additional Properties, 129
 Arguments Object, 36
 Array Initialiser, 37
 Array.prototype.concat ([item1 [, item2 [,

…]]]), 67
 Array.prototype.join (separator), 68

 Array.prototype.pop (), 69
 Array.prototype.push ([item1 [, item2 [, …

]]]), 70
 Array.prototype.reverse (), 70
 Array.prototype.shift (), 72
 Array.prototype.slice (start, end), 73
 Array.prototype.sort (comparefn), 74

 Array.prototype.splice (start, deleteCount [
, item1 [, item2 [, ...]]]), 76

 Array.prototype.toLocaleString (), 66
 Array.prototype.unshift ([item1 [, item2 [,

...]]]), 78
 Atom, 116
 AtomEscape, 116

 Block, 46
 CharacterClass, 117
 CharacterClassEscape, 117
 ClassEscape, 118

 Comments, 11
 Conditional Processing Algorithm, 18

 Conditional Source Text Processing, 16
 Creating Function Objects, 57
 Date.parse (string), 91
 Date.prototype.getYear (), 130
 Date.prototype.setDate (date), 110
 Date.prototype.setFullYear (year [, month [,

date]]), 111

 Date.prototype.setHours (hour [, min [, sec
[, ms]]]), 109

 Date.prototype.setMilliseconds (ms), 107
 Date.prototype.setMinutes (min [, sec [, ms

]]), 108
 Date.prototype.setMonth (month [, date]),

111

 Date.prototype.setSeconds (sec [, ms]),
107

 Date.prototype.setUTCDate (date), 110
 Date.prototype.setUTCFullYear (year [,

month [, date]]), 112

 Date.prototype.setUTCHours (hour [, min [,
sec [, ms]]]), 110

 Date.prototype.setUTCMilliseconds (ms),
107

 Date.prototype.setUTCMinutes (min [, sec [,
ms]]), 109

 Date.prototype.setUTCMonth (month [, date

]), 111
 Date.prototype.setUTCSeconds (sec [, ms

]), 108
 Date.prototype.setYear (year), 130
 Date.prototype.toDateString (), 105
 Date.prototype.toLocaleDateString (), 106

 Date.prototype.toLocaleString (), 105
 Date.prototype.toLocaleTimeString (), 106

 Date.prototype.toString (), 103
 Date.prototype.toTimeString (), 105
 Date.UTC (year, month [, date [, hours [,

minutes [, seconds [, ms]]]]]), 103
 Daylight Saving Time Adjustment, 91

 debugger Statement, The, 52
 Delete Operator, The The, 40
 Disjunction, 114
 Entering an Execution Context, 36
 Error ([argument1 [, argument2

]]message), 121
 Error.prototype.message, 122

 Error.prototype.toString (), 122
 Eval Code, 37
 eval(x), 59
 Expressions, 126

 for Statement, The, 47
 for-in Statement, The, 48

 Function Code, 37
 Function Definition, 53
 Function Objects, 131
 Function Properties of the Match Object, 90
 Function.prototype.apply (thisArg,

argArray), 65
 Function.prototype.call (thisArg [, arg1[,

arg2, …]]), 65
 Function.prototype.toString (), 64
 Functions and Programs, 127
 Future Reserved Words, 12
 GetValue (V), 31
 Global Code, 36
 Global Object, The, 59

 Global State, 17
 Greater-than Operator (>), The, 42
 Internal Properties and Methods, 30, 131
 length, 80
 Less-than-or-equal Operator, The (<=),

42

134 / 134

[MS-ES3] – v1.0
Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document
Copyright © 2010 Microsoft Corporation.
Release: March 26, 2010

 Lexical Conventions, 10
 Lexical Grammar, 124
 Line Terminators, 11

 Local Time Adjustment, 90

 Native ECMAScript Objects, 59
 NativeError (message), 123
 NativeError Object Structure, 123
 NativeError.prototype.name, 124
 new Array ([item0 [, item1 [, …]]]), 65
 new Error (messageOrNumber), 121
 New NativeError (message), 124

 new RegExp (pattern, flags), 118
 newObject ([value]), 61
 NonemptyClassRanges, 117
 Notation, 113
 Number Type, The, 30
 Number.prototype.toExponential

(fractionDigits), 88

 Number.prototype.toFixed (fractionDigits),
87

 Number.prototype.toLocaleString (), 86
 Number.prototype.toPrecision (precision),

89
 Number.prototype.toString (radix), 86

 Number.prototype.valueOf (), 87
 Object ([value]), 60
 Object Initialiser, 39
 Object.prototyop.hasOwnProperty (V), 62
 Object.prototyope.toLocaleString (), 62
 Object.prototype.isPrototype Of (V), 63
 Object.prototype.propertyIsEnumerable (V),

63
 Object.prototype.toString (), 61
 Object.prototype.valueOf (), 62

 parseInt (string, radix), 59, 131
 Pattern, 113
 Patterns, 112

 Properties of Error Instances, 123
 Properties of the Date Prototype Object, 103
 Properties of the Error Prototype Object,

122
 Properties of the Function Prototype Object,

63
 Properties of the Number Prototype Object,

85
 Properties of the Object Constructor, 61

 Properties of the String Prototype Object,
81

 Property Accessors, 39

 prototype, 65

 Quantifier, 116
 RangeError, 123
 Reference Type, The, 31
 RegExp.prototype.exec (string), 119
 RegExp.prototype.toString (), 120
 Regular Expression Literals, 15, 131
 Regular Expressions, 128

 Source Text, 10
 Statements, 46, 126
 Strict Equality Comparison Algorithm, The,

45
 String Literals, 12, 129
 String.fromCharCode ([char0 [, char1 [,

…]]]), 81

 String.prototype.indexOf (searchString,
position), 81

 String.prototype.lastIndexOf (searchString,
position), 81

 String.prototype.localeCompare (that), 81
 String.prototype.match (regexp), 82

 String.prototype.replace (searchValue,
replaceValue), 82

 String.prototype.search (regexp), 83
 String.prototype.slice (start, end), 83
 String.prototype.split (separator, limit), 83
 String.prototype.substr (start, length), 129
 String.prototype.toLocaleLowerCase (), 85

 String.prototype.toLocaleUpperCase (), 85
 switch Statement, The, 49
 SyntaxError, 123

 Term, 114
 TimeClip (time), 91
 To Boolean, 32

 ToNumber, 33
 ToObject, 34
 ToPrimitive, 31
 ToString, 33
 try Statement, The, 52
 TypeError, 123
 typeof Operator, The, 40

 Types, 29
 Unicode Format-Control Characters, 10
 Variable Instantiation, 35

